
ATLANTIC COUNCIL 1

Driving Software
Recalls: Manufacturing
Supply Chain Best
Practices for Open
Source Consumption

EXECUTIVE SUMMARY

In December 2021, the Log4j vulnerability, Log4shell, crippled development
teams worldwide. The exploit itself was not what dragged teams down. Instead,
most software organizations could not identify whether and where they were

using Log4j. This meant developers needed to review entire codebases to deter-
mine their exposure and risk. For large enterprises with thousands or tens of
thousands of applications, work on new features came to a halt.

Log4shell was another example of software organizations failing to acknowl-
edge or recognize (likely both) that open source software (OSS) is more than
just a technological innovation—OSS wholly changed how software products
are created. Over more than two decades, OSS catalyzed an already growing
movement towards componentized software development—where applica-
tions are developed in parts by different internal and external teams. In many
ways, OSS transformed the industry into something that more closely mirrors
traditional manufacturing.

While there is no 1:1 comparison between software development and other
forms of manufacturing, there are still many similarities that provide a learning
opportunity. Specifically, by looking at automotive manufacturing, there are
modern supply chain management best practices capable of improving OSS
consumption and software supply chain security. These same mechanisms can
also improve the processes software manufacturers use to disclose the pres-
ence of vulnerabilities to their customers.

It is the latter point that is most critical. Like expectations set for any other manu-
facturer, customers expect software manufacturers to follow a standard of care
to ensure their products are safe and secure by design. More importantly, if
there is a defect in a product, customers expect a manufacturer to communi-
cate and remediate the defect.

#ACcyber

ISSUE BRIEF

OCTOBER 2023

The Cyber Statecraft Initiative
works at the nexus of geopolitics
and cybersecurity to craft strat-
egies to help shape the conduct
of statecraft and to better inform
and secure users of technol-
ogy. This work extends through
the competition of state and
non-state actors, the security
of the internet and computing
systems, the safety of opera-
tional technology and physical
systems, and the communities
of cyberspace. The Initiative
convenes a diverse network of
passionate and knowledgeable
contributors, bridging the gap
among technical, policy, and
user communities.

The mission of the
Digital Forensic Research
Lab (DFRLab) is to identify,
expose, and explain disinforma-
tion where and when it occurs
using open-source research;
to promote objective truth as a
foundation of government for
and by people; to protect demo-
cratic institutions and norms
from those who would seek to
undermine them in the digital
engagement space; to create a
new model of expertise adapted
for impact and real-world results;
and to forge digital resilience at
a time when humans are more
interconnected than at any point
in history, by building the world’s
leading hub of digital foren-
sic analysts tracking events in
governance, technology, and
security.

BY JEFF WAYMAN AND BRIAN FOX

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 2

#ACcyber

Traditionally, this process of notification and remediation is
referred to as a recall. Like comparing software and automo-
tive manufacturing, a recall process for software cannot be
applied exactly. Yet, there are similarities. Critical elements
of recall processes could provide a mechanism to hold soft-
ware manufacturers accountable for the parts they use and
for communication of critical vulnerabilities (defects) to their
customers. However, many manufacturers do not, or cannot,
track the OSS used in their software products. Worse yet, in
many cases, they lack awareness of critical vulnerabilities
in the software products they manufacture.

This paper aims to demonstrate how principles from modern
automotive manufacturing, specifically those from W. Edwards
Deming, a leader in supply chain and management theory,
can be applied to improve OSS consumption and supply
chain security. With these processes in place, software manu-
facturers can minimize the impact of vulnerable OSS and
communicate to customers when those defects are encoun-
tered. To implement these improvements, policy from the
federal government will need to provide further guidance,
direction, and accountability.

For software manufacturers, this means:

• Building security into software products by design.

• Consuming only high-value OSS components and projects.

• Continuously tracking, monitoring, and improving OSS
consumption.

For policymakers, this means:

• Holding software manufacturers responsible and account-
able via a national standard of care.

• Requiring software manufacturers to demonstrate their
approach to vetting OSS used in their products.

• Driving software manufacturers to continuously track,
monitor, and improve OSS consumption.

1	 “CVE-2021-44228,” NIST NVD, December 10, 2021, https://nvd.nist.gov/vuln/detail/CVE-2021-44228.
2	 “The Heartbleed Bug,” Heartbleed, June 3, 2020, https://heartbleed.com/; “GNU Bourne-Again Shell (Bash) ‘Shellshock’ Vulnerability,” CISA, September 30,

2016, https://www.cisa.gov/news-events/alerts/2014/09/25/gnu-bourne-again-shell-bash-shellshock-vulnerability-cve-2014-6271.
3	 “Log4j – Apache Log4jTM 2,” The Apache Software Foundation, May 2, 2023, https://logging.apache.org/log4j/2.x/.
4	 This includes notable systems and products like Amazon Web Services, Cloudflare, and iCloud, among others. Due to the lack of disclosure requirements the

exact impact of the vulnerability is impossible know.
5	 Liam Tung, “US warns Log4j flaw puts hundreds of millions of devices at risk,” ZDNET, December 14, 2021, https://www.zdnet.com/article/log4j-flaw-puts-

hundreds-of-millions-of-devices-at-risk-says-us-cybersecurity-agency/.
6	 Cyber Safety Review Board, “Review of the December 2021 Log4j Event,” July 11, 2022, https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-

Log4-July-11-2022_508.pdf.
7	 “FACT SHEET: Biden-Harris Administration Announces National Cybersecurity Strategy,” The White House, March 2, 2023, https://www.whitehouse.gov/

briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy/.
8	 “Open Source Supply, Demand, and Security,” Sonatype, https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-demand-security.

INTRODUCTION

O n December 10, 2021, around three weeks before
much of the world logged off for winter and end-of-
year holiday festivities, arguably the worst soft-

ware vulnerability ever discovered, Log4shell,1 was publicly
disclosed. And this is not something said lightly. Following
heavy-hitting vulnerabilities like Heartbleed and Shellshock,
Log4shell had an unprecedented impact.2 The vulnerability
affected Log4j, a ubiquitous open source logging framework
used to track information and errors in computer systems.3

Logging tools provide critical functionality to software orga-
nizations today, helping enterprises investigate and deter-
mine causes of unexpected operations of everything from
websites to applications on your phone. For example, if a
server suddenly shuts down, those logs help pinpoint the
root cause. Log4j, which the Apache Software Foundation
manages, is used in almost every Java application,4 especially
at the enterprise level.5 Log4shell was critical both because
it was easy to exploit and due to its potential widespread
impact, which included servers providing critical access to
secured networks and sensitive data at the private, commer-
cial, and national levels.

The US Cybersecurity and Infrastructure Security Agency
(CISA) has cited the scale of the Log4shell vulnerability across
much of their published best practices. In July 2022, the first
report from the Cyber Safety Review Board (CSRB) provided
updates on lessons learned from Log4shell as well.6 And then
in March 2023, the National Cybersecurity Strategy stressed
the importance of open source software (OSS) security and
its impact on supply chains. Unfortunately, with the historical
absence of meaningful cybersecurity regulatory oversight,
organizations and individuals must often voluntarily adopt
these best practices and recommendations, especially in
engagements outside government activities.7 This gap is
punctuated by evidence indicating this is not happening
across the board.

In 2022, a year after the disclosure of Log4shell, a study
of current Log4j downloads indicated that as much as 30
percent of users were still using vulnerable versions.8 Some
of these cases were potentially due to hubris or lack of care.
However, the more likely cause of continued downloads of
vulnerable versions of Log4j was an organization’s lack of
visibility into the OSS they consume. Without this insight,

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://heartbleed.com/
https://www.cisa.gov/news-events/alerts/2014/09/25/gnu-bourne-again-shell-bash-shellshock-vulnerability-cve-2014-6271
https://logging.apache.org/log4j/2.x/
https://www.zdnet.com/article/log4j-flaw-puts-hundreds-of-millions-of-devices-at-risk-says-us-cybersecurity-agency/
https://www.zdnet.com/article/log4j-flaw-puts-hundreds-of-millions-of-devices-at-risk-says-us-cybersecurity-agency/
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy/
https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-demand-security

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 3

#ACcyber

organizations cannot effectively respond to vulnerabilities,
including communication of the presence and effect of those
vulnerabilities on users (customers) of their software.

There is a general expectation that products like food, vehi-
cles, and other goods should be inherently safe. In cases
where products include components known to be harmful
or defective, manufacturers have a responsibility to disclose
and remediate that risk through a recall process. When this
is impossible, manufacturers are usually obligated by regu-
latory policy to warn their customers of the potential danger
of defective products. Yet, software products are not held
to the same standard; this must change.

When defects are present, like their peers, software manu-
facturers are responsible for communicating potential risks
to their users and guiding them through remediation options.
Fortunately, addressing the awareness of OSS consumption
and improving communication related to OSS vulnerability
disclosure does not require every aspect of a typical recall
process deployed in manufacturing. However, achieving
those improvements does necessitate software manufactur-
ers track and monitor all the OSS they consume and incor-
porate into their software products.

Starting with an analysis of the Log4j vulnerability and
the corresponding response by software manufacturers,
this paper aims to provide a better understanding of OSS
consumption, the role OSS plays in the modern software
supply chain, and relevant parallels to traditional manufac-
turing, specifically in the automotive sector. This comparison
provides an opportunity to borrow essential mechanisms
tested across many years against similar challenges. Look-
ing specifically at automotive manufacturing also provides
an opportunity to isolate the best and most relevant exam-
ples, especially those pioneered by W. Edwards Deming, a
pivotal figure in modern supply chain management. By build-
ing awareness of OSS consumption, software manufacturers
can improve their ability to effectively respond to issues like
Log4shell and facilitate risk communication through existing
coordinated vulnerability disclosure (CVD) practices, such as
publishing advisories and notifications, that closely resem-
ble recall processes in manufacturing. While disclosure and
communication are critically important, this paper’s primary

9	 “CVE-2021-44228 Detail,” December 10, 2020, https://nvd.nist.gov/vuln/detail/CVE-2021-44228.
10	 While CVSS scores provide a common framework to compare cybersecurity vulnerabilities, it should be noted that scores are imperfect and can be

misleading. For more, read Jacques Chester’s “A closer look at CVSS scores.”
11	 “Log4j – Apache Log4j Security Vulnerabilities,” The Apache Software Foundation,

https://logging.apache.org/log4j/2.x/security.html#fixed-in-log4j-2-15-0-java-8.
12	 “CVE Security Vulnerability Database. Security Vulnerabilities, Exploits, References and More,” CVEdetails, https://www.cvedetails.com/index.php.
13	 Lily Hay Newman, “The Log4j Vulnerability Will Haunt the Internet for Years,” Wired, December 14, 2021, https://www.wired.com/story/log4j-log4shell/.
14	 Tim Starks, “CISA Warns ‘Most Serious’ Log4j Vulnerability Likely to Affect Hundreds of Millions of Devices,” CyberScoop, December 13, 2021,

https://cyberscoop.com/log4j-cisa-easterly-most-serious/.
15	 Jonathan Greig, “Log j Update: Experts Say Log4shell Exploits Will Persist for ‘Months If Not Years,” ZDNET, December 13, 2021,

https://www.zdnet.com/article/log4j-update-experts-say-log4shell-exploits-will-persist-for-months-if-not-years/.
16	 Bill Toulas, “State Hackers Use New PowerShell Backdoor in Log4j Attacks,” BleepingComputer, January 11, 2022,

https://www.bleepingcomputer.com/news/security/state-hackers-use-new-powershell-backdoor-in-log4j-attacks/.
17	 “Iranian Government-Sponsored APT Actors Compromise Federal Network, Deploy Crypto Miner, Credential Harvester,” CISA, November 25, 2022,

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-320a#:~:text=fbi.gov.-,Mitigations,-CISA%20and%20FBI.

intent is to assert software manufacturers’ responsibility to
continuously track, monitor, and improve their consumption
of OSS at an organizational level.

THE SEVERITY OF LOG4SHELL

Log4shell (CVE-2021-44228)9 earned the highest
Common Vulnerability Scoring System (CVSS) score,
level 10 (critical), in its official Common Vulnerability

Enumeration (CVE) disclosure.10,11 For perspective, an inde-
pendent database of CVSS scores shows just 4 percent of
all CVEs ever recorded (over 200,000 through twenty-three
years of reporting) received a score of ten, which is typically
limited to high-impact vulnerabilities that are also easy to
exploit.12

In the case of Log4shell, the vulnerability allowed remote
code execution—the ability for bad actors to remotely make
changes to, run software on, and take control of a system.
While this type of exploit is terrible in any situation, what
made Log4shell so potentially dangerous was its ubiquity
within the Java ecosystem. In an article from Wired magazine
shortly after the official disclosure, Log4shell was character-
ized as something that would “haunt the Internet for years.”13
Echoing that sentiment, just four days after the Log4shell
disclosure, CISA Director Jen Easterly briefed industry
leaders on the situation, saying, “[the exploit] is one of the
most serious I’ve seen in my entire career, if not the most
serious.”14 Jay Gazlay of CISA’s Vulnerability Management
Office followed Easterly’s comments, stating, “Hundreds
of millions of devices are likely to be affected.” However,
that number is likely low, given estimates of the breadth of
affected companies and projections from experts that the
vulnerability will persist for years to come.15

By January 2022, there were already multiple reported
examples of bad actors exploiting the Log4shell vulnera-
bility.16 By September of the same year, the US government
published an advisory confirming that the Federal Civilian
Executive Branch (FCEB) had been compromised.17 Consid-
ering the Log4shell vulnerability was present in versions of
Log4j since 2013, there is a high likelihood that attacks took
place for some time before the official disclosure.

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://theoryof.predictable.software/articles/a-closer-look-at-cvss-scores
https://www.cvedetails.com/index.php
https://www.wired.com/story/log4j-log4shell/
https://cyberscoop.com/log4j-cisa-easterly-most-serious/
https://cyberscoop.com/log4j-cisa-easterly-most-serious/
https://www.zdnet.com/article/log4j-update-experts-say-log4shell-exploits-will-persist-for-months-if-not-years/
https://www.zdnet.com/article/log4j-update-experts-say-log4shell-exploits-will-persist-for-months-if-not-years/
https://www.bleepingcomputer.com/news/security/state-hackers-use-new-powershell-backdoor-in-log4j-attacks/
https://www.bleepingcomputer.com/news/security/state-hackers-use-new-powershell-backdoor-in-log4j-attacks/

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 4

#ACcyber

Unfortunately, exploitation of a vulnerability does not neces-
sarily mean software manufacturers will pay attention. CISA’s
Cybersecurity Strategic Plan FY 2024-2026 highlights that
“most intrusions today are perpetrated using known vulner-
abilities or exploiting weak security controls.”18 A telemetry
analysis from Tenable, a cybersecurity risk firm, found that
72 percent of organizations were still vulnerable to Log4shell
as of October 2022.19 To understand how that is possible,
when this article was written, a review of Maven Central, the
largest repository of open source Java components, showed
that 23 percent of new downloads each week represented
versions vulnerable to Log4shell. 20 This equates to hundreds
of thousands of vulnerable versions of Log4j entering soft-
ware supply chains every month.

However, the negativity surrounding the Log4shell vulner-
ability is only part of the story. The spotlight on Log4j
demonstrates OSS’s tremendous impact on modern soft-
ware development. If software manufacturers are unaware
of the vulnerability of critical OSS like Log4j, what about all
the other OSS they consume?

THE PROBLEM IS NOT OPEN SOURCE
SOFTWARE

Today, almost 90 percent of modern applications are
composed of OSS, including components like the
Log4j logging framework.21 On average, about 11

percent of those OSS components have known vulnerabil-
ities. While the extensive use of OSS has reduced the cost
of research and development, catalyzed incredible leaps
in innovation, and drastically decreased the time it takes to
deliver critical business functionality, it has also created a
security conundrum.

Unlike other third-party software, in most cases, OSS is not
“supplied;” that is, projects or individual developers that
maintain the software do not act as suppliers. As described
in Chinmayi Sharma’s “Tragedy of the Digital Commons,” OSS
is a “public good” or a natural resource freely available to
anyone.22 As a result, its creators cannot know how their work
will be used or, in many cases, how software manufacturers
may modify it to fit their customers’ needs. Instead, it is the
responsibility of the software manufacturer to ensure that any
final product delivered to a customer that uses OSS is free
of defects (i.e. vulnerabilities). This relationship differs from
traditional supplier engagement and procurement processes
used to offset research and development costs. This differ-
ence presents considerable potential for risk.

18	 “CISA Cybersecurity Strategic Plan FY2024-2026,” CISA, August 6, 2023,
https://www.cisa.gov/sites/default/files/2023-08/FY2024-2026_Cybersecurity_Strategic_Plan.pdf.

19	 “Tenable Research Finds 72% of Organizations Remain Vulnerable to ‘Nightmare’ Log4j Vulnerability,” Tenable, November 30, 2022,
https://www.tenable.com/press-releases/tenable-research-finds-72-of-organizations-remain-vulnerable-to-nightmare-log4j.

20	 “Log4j exploit updates,” Sonatype, https://www.sonatype.com/resources/log4j-vulnerability-resource-center.
21	 “2020 State of the Software Supply Chain,” Sonatype, https://www.sonatype.com/hubfs/SSC/SON_SSSC-Report-2020_sept23.pdf.
22	 Chinmayi Sharma, “Tragedy of the Digital Commons,” North Carolina Law Review 101 (2023), 1129, https://doi.org/10.2139/ssrn.4245266.
23	 “8th Annual State of the Software Supply Chain Report,” Sonatype, 2021. https://www.sonatype.com/state-of-the-software-supply-chain/introduction
24	 “Vulnerability – Glossary,” National Institute of Standards and Technology, https://csrc.nist.gov/glossary/term/vulnerability.

A componentized approach to software development is not
new. Many organizations still outsource the development of
specific frameworks and other elements of an application to
third parties. However, these engagements use standardized
procurement and review processes that ensure products
match technical specifications and other contractual require-
ments. In contrast, for many organizations, the consumption
of OSS has no equivalent process.

This lack of process is both a blessing and a curse. Develop-
ment teams can use and modify whatever they find among
the vast amount of available OSS. That freedom allows them
to completely sidestep the procurement process used when
working directly with third parties. This circumvention often
is not done intentionally. In most cases, development teams
simply do not associate OSS consumption with procure-
ment. This lack of overhead can create short-term benefits
for innovation. However, knowing where OSS is used is
just as crucial as what OSS is consumed. Without common
standards, software manufacturers often do not track their
OSS consumption, making it extremely difficult to monitor
and identify defects.

By ignoring OSS consumption, development teams expose
the organization to increased risk, especially when vulner-
abilities are discovered. This extends well beyond Log4s-
hell: the same report that identified continued downloads
of vulnerable versions of Log4j also found that 96 percent
of OSS downloads with a vulnerability have non-vulnerable
updates that are available.23 The lack of visibility into the
consumption of OSS means software manufacturers often
miss these fixes and patches that would reduce and, in most
cases, entirely remove the risk associated with vulnerabili-
ties in previous versions.

THE IMPACT OF VULNERABILITIES

The term “vulnerabilities” sounds frightening; some-
times, they can have that potential. However, vulnera-
bilities generally are not an injection of malicious code

but rather an inadvertent weakness in the code itself.24 In
many ways, vulnerabilities can be as simple as a typo in any
written content. This broad definition is true of all code, open
source or proprietary. The nature of a vulnerability changes
when it can be exploited. In other words, when those bugs
allow bad actors to access private systems, the vulnerabil-
ity represents risk.

https://www.cisa.gov/sites/default/files/2023-08/FY2024-2026_Cybersecurity_Strategic_Plan.pdf
https://www.cisa.gov/sites/default/files/2023-08/FY2024-2026_Cybersecurity_Strategic_Plan.pdf
https://www.tenable.com/press-releases/tenable-research-finds-72-of-organizations-remain-vulnerable-to-nightmare-log4j
https://www.tenable.com/press-releases/tenable-research-finds-72-of-organizations-remain-vulnerable-to-nightmare-log4j
https://www.sonatype.com/resources/log4j-vulnerability-resource-center
https://www.sonatype.com/hubfs/SSC/SON_SSSC-Report-2020_sept23.pdf
https://doi.org/10.2139/ssrn.4245266
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://csrc.nist.gov/glossary/term/vulnerability

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 5

#ACcyber

The presence of risk does not mean a vulnerability is inher-
ently critical to every organization and every software prod-
uct. Depending on the context, vulnerabilities may present
little to no risk, even in the case of a critical OSS compo-
nent like Log4j. However, it is impossible to understand
and address a risk without a clear understanding of OSS
consumption, implementation, and configuration. This lack
of understanding directly impedes software manufacturers’
ability to respond to critical issues effectively.

Once again, using the Log4j vulnerability as an example,
much of the time development teams spent addressing
Log4shell was not focused on implementing fixes and
applying patches to Log4j. Instead, the lion’s share of initial
investment was spent trying to fully understand their use
of Log4j in the first place. So, before the arduous technical
work could begin, teams first needed to figure out their exact
version of Log4j and where the vulnerable versions existed
across their portfolio of software products.25 Again, all this
must happen before any fix or patch can be applied. This
can quickly become an impossible task at scale for large
organizations with a complex code base and tens of thou-
sands of applications.

Regardless of organizational size, the reactive nature of a
software manufacturer’s response to vulnerabilities is the
best example of the current weaknesses in OSS consump-
tion management. Yet, that weakness is almost entirely
avoidable. If software organizations track what OSS they
consume, where that OSS is used, and then monitor OSS for
defects and other quality parameters, their response can be
far more proactive. In many cases, issues can be addressed
long before a product ships. Even when that is not possible,
the ability to triage and prioritize remediation efforts avoids
chaos when a vulnerability is discovered, allowing teams
to take direct control of the response and tackle defects
strategically.

The inability of many development teams to effectively
respond to Log4shell should be a call for software manu-
facturers to change. At the center of this change is the
acceptance and adoption of processes that acknowledge
OSS is not simply a way to bypass traditional procurement.
Instead, OSS must be a critical consideration in managing
a software supply chain. Achieving a paradigm shift like this
requires tested principles and mechanisms. Luckily, there
are a plethora of modern supply chain management best
practices that can be borrowed from other manufacturing
industries, especially automotive manufacturing.

25	 “(ISC)2 Pulse Survey: Log4j Remediation Exposes Real-World Toll of the Cybersecurity Workforce Gap,” “(ISC)2, February 22, 2022,
https://blog.isc2.org/isc2_blog/2022/02/log4j-remediation-exposes-cybersecurity-workforce-gap.html.

26	 Jerry Hirsch, “NHTSA Launches Probe into Cobalt Recall; GM Issues Another Apology,” Los Angeles Times, February 27, 2014
https://www.latimes.com/business/autos/la-fi-hy-nhtsa-gm-cobalt-recall-probe-20140227-story.html.

27	 Jim Gorzelany, “Automakers with the Most and Fewest Recalls in 2022,” Forbes, January 2, 2023
https://www.forbes.com/sites/jimgorzelany/2022/12/30/automakers-with-the-most-and-fewest-recalls-in-2022/?sh=441e13327cb9.

28	 “Vehicle Safety Recalls Week,” NHTSA, https://www.nhtsa.gov/recalls/vehicle-safety-recalls-week#:~:text=Every%20vehicle%20recall%20is%20
serious,any%20unrepaired%20recalls%20fixed%20immediately.

29	 The W. Edwards Deming Institute, https://deming.org/.

THE ADVANTAGE OF MODERN SUPPLY CHAIN
MANAGEMENT PRINCIPLES

W hile nuances exist, the intent of this paper is not
to draw a direct line between software develop-
ment and automotive manufacturing. Instead, it is

to compare processes in both industries, especially related
to supply chain best practices. This is also not to say that
manufacturing has everything figured out. Even in recent
history, there have been low points, such as the combined
failure of General Motors and the National Highway and
Transportation Safety Administration (NHTSA) to recall faulty
ignition switches in the Chevy Cobalt.26 However, despite
these setbacks and continued opportunities to improve, auto-
mobile manufacturers have developed efficient and effec-
tive processes for identifying and communicating defective
products. Through targeted notifications and safety recalls,
automotive manufacturers collectively communicate defects
for millions of vehicles each year.27

In many cases, recalls are related to discovering and commu-
nicating severe safety issues that could cause serious injury
and, in some cases, death. In this way, the volume of recalls
represents drastic improvements to consumer safety.28
However, a common misconception is that recalls are a way
to pull a defective product back. While this works in some
cases, for example, if a vehicle has not yet been sold, most
recalls affect vehicles already on the road. This means the
manufacturer must be able to identify not only defective
parts but also the location of the affected vehicles. The crit-
ical point here is that recalls would be impossible without
the ability to track parts in a vehicle throughout the supply
chain and up to final assembly. Put another way, this ability
to track and monitor parts means that when a defect is iden-
tified, the manufacturer can target their communication and
any remediation steps to the affected consumers.

Of course, tracking and responding to defects is only a part
of modern supply chain management. Manufacturers must
also work to minimize defects, and this is where modern
supply chain theory provides the most relevant and helpful
guidance for software supply chains. Specifically, today’s
software manufacturers should look to the work of W.
Edwards Deming, who was responsible for helping rebuild
automotive manufacturing in post-World War II Japan and
was highly influential in the global automotive market. Most
notably, Deming focused on improving supply chain prac-
tices and, more importantly, ensuring greater control over
quality and security.29

https://blog.isc2.org/isc2_blog/2022/02/log4j-remediation-exposes-cybersecurity-workforce-gap.html
https://www.latimes.com/business/autos/la-fi-hy-nhtsa-gm-cobalt-recall-probe-20140227-story.html
https://www.forbes.com/sites/jimgorzelany/2022/12/30/automakers-with-the-most-and-fewest-recalls-in-2022/?sh=441e13327cb9
https://deming.org/

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 6

#ACcyber

Deming insisted that manufacturers source the best parts
from the best suppliers, which was at the heart of his strat-
egy. As part of his recommendations, he put together a
fourteen-point approach to quality management.30 Many of
these ideas are now accepted concepts in manufacturing,
like the Andon principle, which states that any worker should
be able to immediately stop production to prevent defects
and further quality issues down the line. While the complete
set of fourteen principles dives deeper into management
philosophy and is outside the scope of this paper, for soft-
ware supply chains and improvements to OSS consumption,
three are critical:

• Principle 3: Cease dependence on inspection to achieve
quality.31 In this principle, Deming suggests manufacturers
“shift left.” By moving inspection earlier in the production
processes, defects are found when changes are much
easier to make. Inspection of the final product should still
happen but should not be the only or first inspection point.

• Principle 4: Move toward a single supplier for any one
item on a long-term relationship of loyalty and trust.32 In
this principle, Deming suggests that complexity is intro-
duced by utilizing multiple suppliers for the same part. By
utilizing the single, best supplier and building a relation-
ship with them, when defects enter the supply chain, you
only need to focus on reaching a resolution with a single
supplier versus tackling issues from several suppliers
simultaneously.

• Principle 5: Constantly improve production systems
to improve quality and efficiency, and thus constantly
decrease costs.33 In this principle, Deming aligns with
the philosophy that you cannot improve what you do not
monitor, and you cannot monitor what you do not track.

It is important to consider that quality can be highly subjec-
tive, establishing a singular definition of high-quality OSS is
unnecessary. Rather, Deming’s principles offer an approach
for software manufacturers to develop better processes for
the consumption of OSS, which will enhance its quality in
the long term. Here is how translating Deming’s guidance
to software supply chains looks:

30	 “Dr. Deming’s 14 Points,” The W. Edwards Deming Institute, https://deming.org/explore/fourteen-points/.
31	 “Inspection Is Too Late. The Quality, Good or Bad, Is Already in the Product,” The W. Edwards Deming Institute, November 8, 2012

https://deming.org/inspection-is-too-late-the-quality-good-or-bad-is-already-in-the-product/.
32	 “The Importance of Working with Suppliers over the Long Term,” May 18, 2015, The W. Edwards Deming Institute

https://deming.org/the-importance-of-working-with-suppliers-over-the-long-term/.
33	 “Haircuts and Continuous Improvement,” The W. Edwards Deming Institute, July 31, 2017, https://deming.org/haircuts-and-continuous-improvement/.
34	 “Security-By-Design and -Default,” CISA, June 12, 2023, https://www.cisa.gov/resources-tools/resources/secure-by-design-and-default.
35	 “Shifting the Balance of Cybersecurity Risk: Principles and Approaches for Security-By-Design and -Default,” CISA, April 13, 2023

https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf.
36	 “OpenSSF Scorecard - Security Health Metrics for Open Source,” GitHub, https://github.com/ossf/scorecard.
37	 “2020 State of the Software Supply Chain: Chapter 4 - How High Performance Teams Manage Open Source Software Supply Chains,” Sonatype, September

23, 2020, https://www.sonatype.com/hubfs/SSC/SON_SSSC-Report-2020_sept23.pdf.

• Principle 1: Build security into software products by
design.34 Like physical products, software manufacturers
should be responsible for ensuring their products are safe
and secure. Within the context of liability, this responsibil-
ity is often associated with a duty of care. In addition to
a duty of care, a manufacturer’s level of responsibility to
ensure products are safe and secure is a standard of care.
To align with the National Cybersecurity Strategy and, in
turn, meet a reasonable duty and standard of care, secu-
rity needs to be a critical part of software manufacturing
from the start.35 For example, assessing the security of OSS
in a product only after it is released is too late. Instead,
software manufacturers must take an active role in their
consumption of OSS at every stage of the Software Devel-
opment Life Cycle (SDLC).

• Principle 2: Use only the best, actively supported OSS
components and build relationships with those projects
and developers. Selecting the best OSS means evaluat-
ing it against criteria like known vulnerabilities, age, and
average remediation/update times, among others. When
an OSS component meets those standards, manufactur-
ers should utilize it exclusively to avoid duplication and
reduce their overall attack surface (risk). Next, select stable,
supported versions of OSS and vet projects to ensure
they utilize recommended processes and best practices.36
Finally, build partnerships with high-quality open source
projects and invest back into those projects to accelerate
innovation upstream and reduce future costs downstream.

• Principle 3: Continuously track, monitor, and improve
the security of OSS that is being consumed. Manufac-
turers should understand how and where they consume
OSS spanning the entire SDLC to reduce their risk related
to known vulnerabilities. Software manufacturers should
also establish criteria and develop organizational policies
to improve the consumption of OSS. While efforts may start
small, research indicates37 a combination of modern tooling
and best practices provide scalable and organization-wide
approaches that can be applied across all teams and prod-
ucts without increasing costs or reducing productivity.

https://deming.org/explore/fourteen-points/
https://deming.org/inspection-is-too-late-the-quality-good-or-bad-is-already-in-the-product/
https://deming.org/the-importance-of-working-with-suppliers-over-the-long-term/
https://deming.org/haircuts-and-continuous-improvement/
https://www.cisa.gov/resources-tools/resources/secure-by-design-and-default
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://github.com/ossf/scorecard
https://www.sonatype.com/hubfs/SSC/SON_SSSC-Report-2020_sept23.pdf

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 7

#ACcyber

The three principles discussed above should define every
software manufacturer’s core strategy for OSS consumption
and guide their approach to software supply chain security.
At the same time, it is worth a word of caution that an over-
correction can occur. The removal of all vulnerabilities is not
necessary—if such a state is even achievable. As mentioned
previously, exploitability and vulnerability mean different
things. Many vulnerabilities have little potential for harm.38
However, when a critical vulnerability does exist, once again,
the most applicable lessons for software manufacturers come
from a set of mechanisms used by automotive manufactur-
ers to identify and respond to defects.

THE FIRST GOAL OF A RECALL

A n automotive recall is usually, although not always,
conducted in partnership with the National Highway
Transportation and Safety Administration (NHTSA),

which, among other activities, investigates defects in auto-
motive products.39 At the end of an investigation, the NHTSA
provides a non-binding recommendation to the manufacturer
on how to recall the product.40 Though automotive manu-
facturers can go against the recommendation, the NHTSA
can seek legal action to ensure vehicle safety standards are
upheld. However, any automotive manufacturer will likely
say that their first goal for recalls is to avoid them altogether.

While a recall represents improved safety, recalls also
represent significant expenses. For example, one consult-
ing firm—AlixPartners—found that 2016, recalls had cost the
automotive industry $22.1 billion.41 Adding a bit more detail,
Forbes cited that the average per-vehicle cost of a recall
was about $500 over the last 10 years.42 However, the cost
of some recalls is much higher—for example, 2021’s Hyundai
recall of 82,000 vehicles, which came in at $11,000 per vehi-
cle, sets a new benchmar.43 Like any business, automotive
manufacturers focus on minimizing costs. And in the case of
a critical defect requiring a recall, costs can increase expo-
nentially. So, to better mitigate and minimize costs due to
defects, many automotive manufacturers utilize processes
and best practices related to supply chain management
like Deming’s principles. This approach allows automotive
manufacturers to proactively address defects in production
and respond to customers quickly, efficiently, and effectively.

38	 “Do all vulnerabilities really matter?,” Red Hat, November 4, 2022, https://www.redhat.com/en/blog/do-all-vulnerabilities-really-matter
39	 National Highway Traffic Safety Administration, https://www.nhtsa.gov/.
40	 “Safety Issues and Recalls,” NHTSA, https://www.nhtsa.gov/recalls.
41	 Michael Held, Alexandre Marian, and Jason Reaves, “The auto industry’s growing recall problem—and how to fix it,” Alix Partners, January 2018,

https://www.alixpartners.com/media/14438/ap_auto_industry_recall_problem_jan_2018.pdf.
42	 Steve Tengler, “Auto Recalls Way Down in 2023 And Mercedes Knows Why,” Forbes, June 28, 2023.

https://www.forbes.com/sites/stevetengler/2023/06/28/auto-recalls-way-down-in-2023-and-mercedes-knows-why/?sh=398df6e06795.
43	 “Hyundai’s recals 82,000 electric cars is one of the most expensive in history,” (sp) CNN Business, February 26, 2021,

https://www.kktv.com/2021/02/26/hyundais-recals-82000-electric-cars-is-one-of-the-most-expensive-in-history/.
44	 “Toyota and Lexus Recall Cars to Replace Engineers,” February 14, 2020, https://www.consumerreports.org/car-recalls-defects/toyota-lexus-recall-replace-

engine-avalon-camry-rav4-es/; Toyota NHTSA Defect Information Report” February 6, 2020, https://static.nhtsa.gov/odi/rcl/2020/RMISC-20V064-0396.pdf.
45	 “Toyota Motor Manufacturing, Kentucky (TMMK),” https://pressroom.toyota.com/facility/toyota-motor-manufacturing-kentucky-tmmk/.
46	 “Toyota Motor North America Reports December 2019, Year-End Sales,” January 3, 2020,

https://pressroom.toyota.com/toyota-motor-north-america-reports-december-2019-year-end-sales/.

For example, in 2020, Toyota encountered a potential coolant
leak defect caused by a faulty water flow meter used to manu-
facture their engines.44 In this instance, the supplier identified
the issue with the water meter but found no evidence this had
created a defect in the engines themselves (it is important
to note that Toyota supplies its own engines). Because the
supplier “found no abnormalities,” it continued to ship the
engines for final assembly at a Toyota manufacturing plant.
However, according to Toyota’s investigation, a coolant leak
defect was detected in vehicles awaiting delivery to dealer-
ships, as well as a small number already in dealer inventory.
Luckily, Toyota could use serial numbers from the defective
engines to trace the leaks back to engines manufactured
using the defective water flow meter over a three-month
period in 2019. With that information, Toyota conducted an
official recall, communicating with dealerships and custom-
ers to coordinate inspections and repairs.

For a better understanding of the scale of both track-
ing the issue and recalling the potentially impacted vehi-
cles, consider that Toyota’s engine manufacturing plant in
Kentucky (their supplier) produces approximately 600,000
engines a year,45 and in 2019, Toyota sold over two million
vehicles46 in the United States. To account for all defective
parts, Toyota recalled just over 44,000 vehicles. However,
the silver lining to this story is that the final number of vehi-
cles impacted by the defect was minimal: only 250, or about
0.05 percent, of those included in the recall.

This example demonstrates the application of all three
of Deming’s principles. First, inspection was built into the
manufacturing process by design and occurred before
final assembly. And it’s important to note, even with those
inspections in place, some defects don’t become apparent
until they’ve reached production. Next, the example shows
the importance of a strong relationship with suppliers, which
made it easier to pinpoint the cause of the engine defect
once they appeared after final assembly. In this scenario,
the supplier’s adherence to supply chain best practices was
as important as the manufacturer’s. Finally, because Toyota
tracks and monitors its parts and vehicles, it was possible
to use the serial numbers from engines manufactured with
the faulty water flow meter and identify only those vehicles
with the potential to leak coolant. Toyota then uses all the
data from this investigation in its continuous improvement
process for manufacturing.

https://www.redhat.com/en/blog/do-all-vulnerabilities-really-matter
https://www.nhtsa.gov/
https://www.nhtsa.gov/
https://www.nhtsa.gov/recalls
https://www.nhtsa.gov/recalls
https://www.consumerreports.org/car-recalls-defects/toyota-lexus-recall-replace-engine-avalon-camry-rav4-es/
https://www.consumerreports.org/car-recalls-defects/toyota-lexus-recall-replace-engine-avalon-camry-rav4-es/
https://www.consumerreports.org/car-recalls-defects/toyota-lexus-recall-replace-engine-avalon-camry-rav4-es/
https://static.nhtsa.gov/odi/rcl/2020/RMISC-20V064-0396.pdf
https://static.nhtsa.gov/odi/rcl/2020/RMISC-20V064-0396.pdf
https://pressroom.toyota.com/facility/toyota-motor-manufacturing-kentucky-tmmk/
https://pressroom.toyota.com/toyota-motor-north-america-reports-december-2019-year-end-sales/
https://pressroom.toyota.com/toyota-motor-north-america-reports-december-2019-year-end-sales/

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 8

#ACcyber

A RECALL FOR SOFTWARE MANUFACTURERS
ALREADY EXISTS

A t first glance, the ability to recall software seems
absurd. However, requiring a customer to physically
return a software product is too literal an interpreta-

tion. Instead, it’s better to consider that software manufac-
turers share a similar goal to automotive manufacturers: to
produce a traceable record of defects and vulnerabilities in
their products to reduce costs and respond more quickly,
effectively, and efficiently. Thus, the lesson from the previous
example for software manufacturers is that a recall process
like Toyota’s and other automotive manufacturers’ is already
possible. In fact, the best software manufacturers follow a
standard process commonly referred to as a Coordinated
Vulnerability Disclosure (CVD).47

A CVD process is a collaborative approach that typically
brings together cybersecurity researchers and software
manufacturers to address critical vulnerabilities and provide
communication to customers when necessary. To manage
the relationship between the members of this group, most
software manufacturers publish a vulnerability disclosure
policy with criteria and guidance for reporting vulnerabilities,
including estimated timelines for remediation and mitigation.
At its core, CVD provides a way for software manufacturers to
communicate with customers and improve the overall quality
and safety of their products. Like the process described in
tracing the root cause of Toyota’s defective engines, CVDs
are most typically initiated by an external identification of an
exploitable vulnerability—a defect. In the case of OSS, this
process is already happening and is a recommended best
practice in the most widely used projects. To understand
how this is already in place today, once again, Log4shell
provides a valuable point of analysis.

The identification and announcement of the Log4shell vulner-
ability was part of a standard CVD process and followed many
of the same steps as a product recall. In the case of Log4j, the
CVD quickly made the headlines worldwide. Log4j would be
hard to miss even for manufacturers not tracking or monitor-
ing their OSS consumption. However, the panic that followed
did not stem from the potential severity and exploitability
of Log4shell alone. While those aspects were important, an
even more fundamental issue was that software manufac-
turers were unaware of where Log4j was used in their appli-
cations or if it was used at all. Unlike Toyota engines, most
software manufacturers have no serial number equivalent
to connect OSS components like Log4j with impacted prod-
ucts. This gap left software manufacturers only one option:
look through every application to find a Log4j dependency,
often resorting to scanning the disks of production servers.
For organizations with tens of thousands of applications,

47	 “Coordinated Vulnerability Disclosure Process,” CISA, https://www.cisa.gov/coordinated-vulnerability-disclosure-process
48	 “CISA Director Easterly Remarks at Carnegie Mellon University,” CISA, February 27, 2023,

https://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university
49	 “8th Annual State of the Software Supply Chain Report.”

this is the equivalent of Toyota recalling every vehicle they
have ever sold to determine which were affected. Not only
would this be unacceptable, but the catastrophic cost would
burden Toyota for years.

Defects resulting in a recall, or CVD in the case of software
manufacturing, test the strength and security of a supply
chain. However, best practices and processes alone are
not enough. While Deming’s principles created measur-
able improvements for automotive manufacturing, another
element is at play in the contrasts between Toyota and soft-
ware manufacturers: responsibility. Software manufacturers
must take responsibility for the security of their software from
the start. By design,48 they must evaluate their suppliers,
whether OSS or commercial, and, most importantly, they must
continuously track, monitor, and improve their consumption
of OSS across all their products and at every stage of the
SDLC. Achieving this goal at scale requires a combination
of data, processes, best practices, and modern tooling. But
most importantly, commitment to the responsibility to deliver
safe, secure products.

With these pieces in place, software manufacturers can meet
the expectations and standards of their peers in other indus-
tries. Software manufacturers will not need to spend months
determining which products are affected when the next crit-
ical vulnerability, like Log4shell, is identified. Instead, quick
and efficient identification will support software manufactur-
ers’ ability to utilize disclosure mechanisms like CVDs and
proactively communicate mitigation and remediation steps
with their customers. While this is not equivalent to remov-
ing products from shelves through physical recalls, better
communication can still drive reduced risk for customers in
the same manner. Further, with the improved consumption
of OSS and attention to the guidance outlined throughout
this paper, software manufacturers can work to avoid vulner-
abilities in the first place.

RECOMMENDATIONS FOR SOFTWARE
MANUFACTURERS AND POLICYMAKERS

Imagine that the next critical OSS vulnerability is identified.
Could software manufacturers determine which applica-
tions in their portfolio are at risk? Could they determine,

based on context, if the vulnerability is exploitable? Could
they ensure that future downloads are of the non-vulnerable
version? How would (or could) they disclose that information
to customers? Based on the available data, the most likely
answer is no, or at least not without great difficulty.49

Many months have passed since Log4shell, yet teams
continue to be affected. As of the writing of this paper, vulner-
able versions of Log4j still constitute one-third of all Log4j

https://www.cisa.gov/coordinated-vulnerability-disclosure-process
https://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university
https://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 9

#ACcyber

downloads. The Log4shell vulnerability has been described
as “endemic”50 and may never go away. Looking beyond
Log4j, almost all downloads (96 percent) of vulnerable open
source components have a non-vulnerable version available.
The logical conclusion is that software manufacturers are
unaware of, uninterested in, or perhaps worse, incapable of
seriously evaluating their OSS consumption.

The accepted paradigm of inaction and ignorance regarding
OSS consumption and software supply chain security is begin-
ning to change. The latest National Cybersecurity Strategy,
along with new requirements for government contractors
and vendors, is just the first step. Policy and regulations will
be revised with even more stringent criteria.51

Software manufacturers that follow modern supply chain
management best practices and principles described in this
paper have an opportunity to address liability concerns and
protect their customers from risks associated with unman-
aged OSS consumption.52 Moreover, when critical vulnera-
bilities occur, software manufacturers can provide effective
communication to guide their customers through a recall-
like disclosure process that addresses steps for mitigation
and remediation.

To drive these improvements, the last section of this paper
is separated into two key areas. The first section provides
recommendations for software manufacturers to improve their
OSS consumption and supply chain security. Aligned with
these recommendations, the next section explores potential
strategies for future policies and regulations. It is important
to note that these recommendations are not a wish list–they
are realistic and based on existing best practices utilized
in supply chain management across various sectors. Each
recommendation represents a reality that can be achieved
today through best practices, processes, and tooling.

Software Manufacturers Recommendations

Build security into software products by design.

Customers expect the software products they purchase and
use to be secure and safe. The federal government has made
it clear that software manufacturers are responsible for ensur-
ing that expectation is met by design. Meeting that expec-
tation means software manufacturers must actively ensure
those parts are free from defects. In alignment with the first
principle borrowed from Deming’s supply chain management
best practices, reducing defects requires attention to open
source consumption at the beginning of software devel-
opment. Waiting until after a product is shipped to identify
vulnerabilities is too late. Instead, software manufacturers

50	 “Review of the December 2021 Log4j Event.”
51	 “National Cybersecurity Strategy,” The White House, March 2023,

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf; “Secure Software Development Attestation Form
Instructions,” CISA, March 2023, https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf.

52	 Trey Herr et al., “Buying Down Risk: Cyber Liability,” Atlantic Council, May 3, 2022,
https://www.atlanticcouncil.org/content-series/buying-down-risk/cyber-liability/.

should create an environment that supports their develop-
ment teams with the information and context needed to make
the best choices when they begin writing code.

When tackling this recommendation, it is important to
consider existing developer workflows. If approaches are
draconian or overly cumbersome, the loss of developer effi-
ciency can discount the reduction in risk and improved OSS
consumption processes. In many cases, developers do not
look at OSS consumption in the same way as other forms of
procurement. Success requires proper strategies to ensure
that changes are not arduous and do not add undue friction
for development teams.

Finally, consider that not all vulnerabilities are exploitable in
every situation, and as such, some products may ship with
OSS vulnerabilities that introduce little to no risk. Regardless,
it is important to balance expectations against an organiza-
tion’s risk tolerance. Every organization will have a different
tolerance, but this is not justification to leave tolerance for
risk undefined. Software manufacturers must create policies
for OSS consumption that match defined risk tolerance and
are integrated throughout the SDLC.

Consume only high-value open source software, compo-
nents, and projects.

The second principle borrowed from Deming focuses on
identifying suppliers that produce the best parts and using
them exclusively. While “best” can be highly subjective, soft-
ware manufacturers should prioritize OSS that consistently
provides measurable value to the organization and is updated
and supported by an active group of contributors. Measur-
ing value starts with identifying known vulnerabilities and
includes criteria like update frequency and how long it takes
a project or contributor to fix a vulnerability, among others.
Once the best option is identified, manufacturers should use
it exclusively. For example, utilizing a single logging frame-
work like Log4j across all software products. In doing so,
software manufacturers can reduce their overall risk surface
and focus on the OSS that best meets their needs.

According to Deming, the relationship with a supplier is
as important as the goods produced. Though OSS is not
“supplied” in a traditional sense, the principle around rela-
tionships stands. Software manufacturers should contribute
back to open source projects as much as possible, especially
for remediating vulnerabilities. This should be considered
an investment in the long-term availability and quality of the
product and can reduce downstream risks associated with
future vulnerabilities.

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.atlanticcouncil.org/content-series/buying-down-risk/cyber-liability/
https://www.atlanticcouncil.org/content-series/buying-down-risk/cyber-liability/

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 10

#ACcyber

Continuously track, monitor, and improve the security of
open source software being consumed.

The last principle borrowed from Deming directs software
manufacturers to continuously track, monitor, and improve
their OSS consumption. While this is not manually feasible
for software, many modern tools support the creation of an
organization-level manifest. This manifest should include
all OSS consumed within the context of specific products
and across every stage of the SDLC. Having a list of OSS
and where it is used is only the first step. Key criteria such
as known vulnerabilities, age, mean remediation time, and
other metadata must be tracked to improve choices and aid
decision-making.

Finally, software manufacturers must work at an organiza-
tional level to limit their exposure to vulnerabilities, which
starts with establishing an OSS consumption policy aligned
with the organization’s risk tolerance. This policy provides
the foundation for broader, organizational-level governance
of OSS consumption. The intent is not to create a list of
approved components and reprimand teams when an unap-
proved component is discovered. Instead, OSS consump-
tion policy should guide decision-making for OSS across the
SDLC. More importantly, an organizational policy for open
source should be used to educate teams and improve OSS
consumption in the long term.

Recommendations for policymakers

Hold software manufacturers responsible and accountable
via a national standard of care.

In “Tragedy of the Digital Commons” Sharma argues that
“Open source defects should be governed the same way
product defects are: when a defect in a product injures a
consumer, the law holds every commercial link in the supply
chain capable of having identified and remediated the defect
accountable.”53 This view represents an expectation of due
care by software manufacturers no different than for manu-
facturers of any physical product. As Sharma points out, soft-
ware manufacturers have long been able to disclaim liability
under outdated interpretations of contract law.54 Legal tools
like end-user license agreements (EULAs) typically contain
indemnity clauses protecting software manufacturers from
liability. However, the National Cybersecurity Strategy (NCS)
hopes to change this with its call to “hold the stewards of
our data accountable … reshape laws that govern liability
for data losses and harm caused by cybersecurity errors,
software vulnerabilities, and other risks created by software
and digital technologies.”55

53	 Sharma, “Tragedy of the Digital Commons.”
54	 “CISA Director Easterly Remarks at Carnegie Mellon University,” February 27, 2023,

https://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university.
55	 “National Cybersecurity Strategy.”
56	 “Shifting the Balance of Cybersecurity Risk: Principles and Approaches for Security-By-Design and -Default.”
57	 “National Cybersecurity Strategy Implementation Plan”, The White House, July 2023,

https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf.
58	 “Secure Software Development Framework,” NIST, January 10, 2023, https://csrc.nist.gov/Projects/ssdf.

Software manufacturers’ lack of responsibility runs counter
to recommendations from Deming’s first principle and CISA’s
guidance that products should be secure by design.56 While
the National Cybersecurity Strategy Implementation Plan’s
(NCSIP) Strategic Objective 3.3.1 calls for the development
of a software security liability framework and mentions a
standard of care, it does not offer substantive details.57 To
address this conflict, future policy should solidify the recom-
mendations from the NCS and NCSIP by creating a national
standard of care that enumerates the responsibility of soft-
ware manufacturers to:

1.	 Identify and evaluate OSS used across their portfolio of
products

2.	Catalog collected data for OSS

3.	Define OSS policies and governance standards

4.	Implement continuous vulnerability tracking and moni-
toring capabilities across the SDLC

5.	Quickly and directly disclose and remediate vulnerabilities

These capabilities would improve security across the board
for both OSS and proprietary component software.

Require software manufacturers to demonstrate their
approach to vetting OSS used in their products.

Many software manufacturers have no standards for their
OSS consumption. The White House Office of Management
and Budget (OMB) sets vendor requirements for federal
agencies looking to acquire software products based on stan-
dards like NIST’s Secure Software Development Framework
(SSDF).58 To qualify, a vendor must submit a form attesting
to the implementation of the required best practices for the
software they provide. However, the SSDF has limitations.
While the framework provides guidance for software manu-
facturers to “define security-related criteria for selecting
software,” it provides no details as to the potential crite-
ria to be used beyond requiring third parties to attest they
meet defined standards. Even under this paradigm, neither
the standards nor attestation requirements indicate a soft-
ware manufacturer’s approach to OSS consumption beyond
technical acquisition (repository, download location, etc.).

According to Deming’s second principle, software manufac-
turers should use the best OSS. The intent of this recom-
mendation is not to define “best.” More important is the
process software manufacturers use to evaluate the OSS they

https://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university
https://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university
https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf
https://csrc.nist.gov/Projects/ssdf

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 11

#ACcyber

consume and how it is measured against their risk tolerance,
both of which should be disclosed to customers. A good
foundation for these processes can be found in Open Source
Security Foundation’s Open Source Consumption Manifesto,
which calls upon all software manufacturers to commit to
improving their consumption of OSS through fifteen prin-
ciples and best practices.59 With these considerations in
mind, future policy should require all software manufacturers
to follow expanded standards for OSS software consump-
tion, including evaluation criteria, applied decision-making
best practices, and detailed process descriptions. Software
procurement and acquisition requirements for vendors
and contractors at the federal level should be expanded to
include qualified details of a software manufacturer’s orga-
nizational OSS consumption policy, including specifics on
the criteria, processes, and tools used when consuming
OSS. As outlined in the NCSIP’s Strategic Objective 3.5.2,
the False Claims Act provides an enforcement mechanism to
ensure truthful attestation, holding software manufacturers
accountable to these expanded requirements.

Drive software manufacturers to continuously track, moni-
tor, and improve OSS consumption

Strategic Objective 3.3.3 of the National Cybersecurity Strat-
egy Implementation Plan focuses on CVDs.60 While imperfect,
the current CVD process works well when communicating
from upstream (OSS) to downstream (software manufactur-
ers), but only in scenarios where a software manufacturer
continuously tracks, monitors, and improves their consump-
tion of OSS. In cases where this is not done and a critical
vulnerability, like Log4shell, fails to make headlines, many
software manufacturers do not know the potential risk they
create for their customers. This is the exact scenario we
see based on research demonstrating a significant propor-
tion of OSS is downloaded with known vulnerabilities while
non-vulnerable versions are available.

The third principle adapted from Deming recommends an
approach to continuously track, monitor, and improve OSS
consumption. This will result in a more proactive response,
better communication with customers, and closer alignment
with the intent of the recall process utilized by automotive
manufacturers. To meet this recommendation in the short
term, acquisition and procurement policy should require
manufacturers to demonstrate CVD processes for respond-
ing to and mitigating OSS with known, critical vulnerabilities
in their software products. In the longer term, the require-
ment should evolve to demonstrate alignment with more
robust vulnerability reporting and disclosure—for example,
the National Institute of Standards and Technology (NIST)

59	 “The Open Source Consumption Manifesto,” OpenSSF EUEG, August 24, 2023, https://github.com/ossf/wg-endusers/tree/main/MANIFESTO.
60	 “National Cybersecurity Strategy Implementation Plan.”
61	 “Shifting the Balance of Cybersecurity Risk: Principles and Approaches for Security-By- Design and -Default;” Murugiah Souppaya, Karen Scarfone, and

Donna Dodson, “Secure Software Development Framework (SSDF) Version 1.1,” NIST Special Publication 800-218, February 2022,
https://doi.org/10.6028/nist.sp.800-218.

62	 Tom Alrich, “VEX (Vulnerability Exploitability eXchange): Purpose and Use Cases,” FOSSA, June 08, 2023,
https://fossa.com/blog/vulnerability-exploitability-exchange-vex-purpose-use-cases/

63	 “Fact Sheet: Public Company Cybersecurity; Proposed Rules,” SEC, 2022, https://perma.cc/5P34-UV92.
64	 Maia Hamin, “Who’s Afraid of the SEC?” Atlantic Council DFRLab, June 14, 2023.

Vulnerability Disclosure Report, highlighted in NIST’s Cyber-
security Supply Chain Risk Management Practices for Tech-
nology and Management (C-SCRM) and the Secure Software
Development Framework,61 or utilization of the Vulnerability
Exploitability eXchange (VEX), currently led by CISA.62

Beyond controls at the federal government level, disclosure
and recall processes for software manufacturers should be
aligned with a defined standard of care. Combining these
approaches provides a more robust mechanism to drive data
security and safety standards for software manufacturers in
specific industries, such as financial services and the health-
care sector. Recently proposed regulation from the Securities
and Exchange Commission (SEC) recommends new cyberse-
curity risk management and governance standards, including
a requirement for public software manufacturers to adopt a
more detailed disclosure process.63 In many ways, the SEC
has taken this a step further by defining responsibility for
public companies and other businesses within their scope
of regulation through their proposed requirement that a
demonstration of those processes be provided.64 Expanding
this requirement to adopt disclosure mechanisms specific to
OSS vulnerabilities would require software manufacturers
to track, monitor, and improve open source consumption in
line with the SEC’s more general cybersecurity requirements.

BRINGING IT ALL TOGETHER

The road to improvement is paved by lessons learned.
Change is hard, and defects are a constant threat
to delivering safe and secure products. For manu-

facturers, minimizing defects is attached to the longevity
and reputation of their enterprise, which often hinges on
avoiding liability as well. In the past, software manufacturers
could avoid liability by delivering products without the same
standard of care as their manufacturing peers; that option is
ending. Today, the US government, along with governments
worldwide, has begun implementing policies and regulations
to hold manufacturers responsible for safe and secure soft-
ware. But gaps remain.

The goal is simple: software manufacturers must build secu-
rity into software products by design, choose the best suppli-
ers, and track and monitor where those parts are used. This
squarely places the responsibility for open source consump-
tion and software supply chain security on manufacturers.
To address this more holistically, this paper has focused on
the importance of OSS consumption as a critical piece to
better software supply chain management. The provided
recommendations provided are time-tested approaches
deployed in traditional automotive manufacturing. These

https://github.com/ossf/wg-endusers/tree/main/MANIFESTO
https://doi.org/10.6028/nist.sp.800-218
https://doi.org/10.6028/nist.sp.800-218
https://fossa.com/blog/vulnerability-exploitability-exchange-vex-purpose-use-cases/
https://perma.cc/5P34-UV92

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 12

#ACcyber

ideas are not new–they represent what software manufac-
turers should be doing already. Every recommendation is
built on the same principles.

The aim is not to stifle innovation. Instead, it is to unwind
an approach that sidesteps responsibility for due care and
to encourage proactive, communicative processes. Policy
improvements and expanded guidance provide an opportu-
nity to help software manufacturers improve their responses
to defects and communication with customers through recall-
like capabilities. What is presented in this paper is a win-win.
These principles simultaneously help improve open source
and proprietary software supply chains while reducing the
overall impact and cost of critical vulnerabilities like Log4s-
hell altogether.

ACKNOWLEDGMENTS

The authors would like to thank Deborah Bryant, Maia Hamin,
Stewart Scott, Shane Miller, Jonathan Meadows, Christopher
Robinson, and several individuals who will remain anony-
mous for their feedback on earlier versions of this document,
as well as individuals who attended a Chatham House rule
workshop on the paper. In addition, the authors would like
to thank Anais Gonzalez and Donald Partyka for their layout
of this issue brief.

ABOUT THE AUTHORS

Jeff Wayman has spent more than a decade leading digital
content and community teams across OSS Security, DevOps,
and DevSecOps roles. In his current position, he guides OSS
security thought leadership and content strategy for Sona-
type. Jeff promotes OSS security awareness through his
work with the OpenSSF End Users Working Group and his
contributions to the Atlantic Council’s Open Source Policy
Network. Jeff is pursuing an MBA at the Gies College of Busi-
ness at the University of Illinois, Urbana-Champaign, focusing
on Digital Marketing and Strategic Innovation.

Brian Fox, Sonatype co-founder and CTO, is a Governing
Board member for the Open Source Security Foundation
(OpenSSF), a member of the Apache Software Foundation,
and former Chair of the Apache Maven project. As a direct
contributor to the Maven ecosystem, including the maven-de-
pendency-plugin and maven-enforcer-plugin, he has over
twenty years of experience driving the vision behind the
project, as well as developing and leading the develop-
ment of software for organizations ranging from startups
to large enterprises. Brian is a frequent speaker at national
and regional events including Java User Groups and other
development-related conferences.

DRIVING SOFTWARE RECALLS: MANUFACTURING SUPPLY CHAIN BEST PRACTICES FOR OPEN SOURCE CONSUMPTION

ATLANTIC COUNCIL 13

#ACcyber

*Executive Committee Members

List as of July 28, 2023

CHAIRMAN

EXECUTIVE
CHAIRMAN
EMERITUS

PRESIDENT AND CEO

EXECUTIVE VICE
CHAIRS

VICE CHAIRS

TREASURER

DIRECTORS

ł

HONORARY
DIRECTORS

