
by Maia Hamin, Sara Ann Brackett, and Trey Herr
with Andy Kotz

DESIGN QUESTIONS
IN THE SOFTWARE
LIABILITY DEBATE

The Cyber Statecraft Initiative works at the nexus of geopolitics and
cybersecurity to craft strategies to help shape the conduct of state-
craft and better inform and secure users of technology. This work
extends through the competition of state and non-state actors, the
security of the internet and computing systems, the safety of oper-
ational technology and physical systems, and the communities of
cyberspace. The Initiative convenes a diverse network of passionate
and knowledgeable contributors, bridging the gap among technical,
policy, and user communities.

Authors
Maia Hamin
Sara Ann Brackett
Trey Herr

Editor
Samia Yakub

This report is written and published in accordance with the Atlantic
Council Policy on Intellectual Independence. The author is solely
responsible for its analysis and recommendations. The Atlantic
Council and its donors do not determine, nor do they necessarily
endorse or advocate for, any of this report’s conclusions.

© 2023 The Atlantic Council of the United States. All rights reserved.
No part of this publication may be reproduced or transmitted in any
form or by any means without permission in writing from the Atlantic
Council, except in the case of brief quotations in news articles, crit-
ical articles, or reviews. Please direct inquiries to:

Atlantic Council
1030 15th Street NW, 12th Floor
Washington, DC 20005

For more information, please visit
www.AtlanticCouncil.org.

January 2024

Design by: Donald Partyka and Anais Gonzalez

Cover: A statue of Lady Justice is shown in front of several lines of code. Graphic designed by Anais Gonzalez and
Donald Partyka. Photo credit goes to Tingey Injury Law Firm/Unsplash and Markus Spiske/Unsplash.

IN TURKEY

by Maia Hamin, Sara Ann Brackett, and Trey Herr
with Andy Kotz

DESIGN QUESTIONS
IN THE SOFTWARE
LIABILITY DEBATE

IN TURKEY

Acknowledgements
The authors would like to thank John Speed Meyers,
Josephine Wolff, Bryan Choi and Melanie Teplinsky for
their feedback on various versions of this document. We
also thank the many unnamed individuals from govern-
ment, academia, and industry who met with us and partic-
ipated in events and group conversations on the topic of
software liability, helping sharpen and clarify our thinking on
the topics herein.

1CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

Table Of Contents

EXECUTIVE SUMMARY� 2

INTRODUCTION� 3

METHODS AND FRAMEWORK� 4

TRIGGERS: WHAT MAKES YOU LIABLE?� 5

	 STANDARDS� 5

	 HARMS� 8

	 RESPONSIBILITY� 9

SCOPE: WHO CAN BE LIABLE?� 12

	 SOFTWARE FOR HIGH RISK SECTORS� 12

	 SOFTWARE FOR HIGH RISK FUNCTIONS� 13

	 SOFTWARE SELLERS OF A CERTAIN SCALE� 13

	 OPEN SOURCE SOFTWARE� 13

GOVERNANCE AND ENFORCEMENT: WHO HOLDS YOU LIABLE (AND HOW)?� 16

	 SETTING STANDARDS� 16

	 ASSESSING COMPLIANCE� 17

	 ENFORCING VIOLATIONS� 18

	 CONSEQUENCES� 22

GOALS: WHAT DOES THE REGIME TRY TO ACHIEVE?� 23

	 GOALS IN THE LITERATURE� 23

	 MATCHING GOALS TO OTHER ELEMENTS OF A REGIME� 26

LIMITATIONS AND DIRECTIONS FOR FUTURE WORK� 30

CONCLUSION� 31

2 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

Executive Summary

L egal liability for insecure software is a deceptively
simple-sounding concept that is, in practice, associ-
ated with a multifaceted and decades-long legal and

policy debate. This paper identifies a set of core design
questions for policy regimes to impose consequences on
vendors of insecure software and surveys 123 articles from
the wide-ranging literature on software liability to examine
their viewpoints with respect to these key decisions.

The first design questions focus on what can create liability,
often a combination of a failure to meet standards for good
behavior with respect to the development and deployment
of secure software and the manifestation of insecurity in
software flaws that cause harm to a software user. These
questions also raise the issue of responsibility—how to link
the behavior of a software vendor to bad cybersecurity
outcomes and account for the behavior of the software user
with respect to software-specific practices such as patching.
The next set of design questions focuses on the scope of a
liability regime: whether it applies to all or only a subset of
software, such as software that is used in high-risk sectors,
that performs particular high-risk functions, that is produced
by entities of a certain size, or software that is available for
sale (versus released under an open source license). The
third set of questions pertains to matters of governance and
enforcement—how and by whom standards are defined,
compliance assessed, violations prosecuted, and conse-
quences determined.

In the sampled literature, certain legal questions—such
as whether to favor tort liability based on product or

negligence theories—have been much debated throughout
the history of the surveyed literature with little evidence of
an emerging consensus. Other questions, such as whether
to hold software used in different sectors to different stan-
dards, or which specific security frameworks or practices to
require, were less discussed. Some of these less-discussed
questions, such as the question of whether to include devel-
opers of open source software in a liability regime, show
relative consensus where they arise. Others, such as how
to handle software patching, are disputed even in the more
limited discussion that has occurred.

Perhaps the most important design question in the frame-
work is that of the policy goal of such a regime. What prob-
lems within the existing software ecosystem does liability
seek to correct? These potential goals, such as driving
better ecosystem-wide security behavior or providing
redress to harmed parties, often point in different directions
with respect to how to resolve particular design questions
in the construction of the regime. Debates, including those
that have swirled in scholarly circles since the mention
of software liability in last year’s National Cybersecurity
Strategy, have rarely articulated the full set of design ques-
tions available in the construction of a regime or explicitly
mapped these questions to the goals of such an endeavor.
This report concludes with a section using original analysis
and the literature sample to examine how different design
questions might be informed by the goals of a software
liability regime.

3CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

Introduction

1	 “National Cybersecurity Strategy,” The White House, March 1, 2023,
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf.

2	 US Library of Congress, Congressional Research Service, Introduction to Tort Law, by Andreas Kuersten, 2023, IF11291.

L egal liability has long been a solution proposed to fix
markets in which buyers are ill-positioned to protect
themselves through purchasing decisions or to

rectify threats from too-dangerous products. Many today
argue that the market for software security is broken in just
such a way: makers of software face too little pressure from
consumers to secure their software because consumers
are ill-equipped to evaluate the security of such software
itself and manufacturers pay few costs if their software is
later found to be insecure. Legal scholars and cyberse-
curity researchers alike have long been interested in the
idea of liability for insecure software, in hopes of providing
redress for victims of insecurity or shifting incentives
toward a better-secured software ecosystem. Following its
mention in the National Cybersecurity Strategy,1 the ques-
tion of how to implement liability for vendors of insecure
software is once again in the conversation.

However, the term liability itself and the goals that motivate
it point not to a single type of legal regime but instead to a
set of heterogenous policy constructs. Two broad buckets
of such constructs are potential regimes based on torts
versus potential regimes based on regulation. Torts allow
one entity to sue another for “act[s] or omission[s] that
cause legally cognizable harm to persons or property,”2 and
have evolved mostly through state standards and common
law, or judges’ rulings rather than explicit laws passed by
federal lawmakers. However, Congress can pass laws that
impact the implementation of torts, and many roads to soft-
ware liability might involve a law that changes the way in
which existing theories of tort have applied to software.
In contrast, in a regulatory regime, a government body
such as an expert agency defines standards and require-
ments for specific entities such as software vendors and
then (often, though not always) enforces these require-
ments itself. Within both the broad buckets of torts liability
and regulatory liability, there are different potential forms,
from product- versus negligence-based torts to premarket
approval requirements versus requirements to self-certify
certain key practices with penalties for misrepresentation.

Thus, many questions remain about the form and nature
of liability that would best achieve the goals laid out in the
National Cybersecurity Strategy, and about the relative
advantages of different potential paths to get there. These
questions are not new, even if they are newly relevant; the

debate over software liability has been evolving throughout
academic research and writing, judicial opinion, and policy
for almost as long as software has existed.

This report makes two contributions.

First, it deconstructs the liability debate into a set of policy
design questions, and then, for each, identifies design
options and models from existing legal structures that could
be used to build and implement such element as well as
articulating how each element relates to other questions
and to the overall goals of such a regime. This framework
deliberately uses terms that are different from the legal
terms of art for certain concepts (for example, “harm” as
a potential trigger for liability is closely related to the legal
concept of “injury”), to avoid taking a normative position on
torts-based versus statutory or regulatory approaches and
to avoid prejudging the design questions presented here of
how to impose legal disincentives for the sale of insecure
software.

Second, to draw from the voluble historical debate and to
help focus the current discussion onto a core set of design
decisions and tradeoffs, this report surveys 123 academic
articles and other pieces of writing that discuss some vari-
ation of software liability. These articles have been coded
with respect to their stances on some of these design ques-
tions and examined both for trends in the balance of view-
points as well as their evolution in time to seek to establish
where there is existing consensus or relationships among
variables that might inform the debate.

A note on scope: this paper is intended to address issues
around liability for vendors of software related to cyberse-
curity practices and problems. Software liability as a term
could encompass a wider range of potential consider-
ations around software-mediated harms that could create
legal liability, such as products-related liability for algo-
rithmic systems. Legal liability can also arise for operators
of software—such as liability for organizations that process
personal data and experience a data breach—rather than
the entity that created and sold such software. These ques-
tions are important but beyond the scope of this work.

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf

4 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

Methods and Framework

This report is based on a review of 123 pieces of
writing from the scholarship on software liability,
including law review articles as well as white papers,

essays, and blog posts. The articles stretch over many
decades of the debate – the earliest of the sampled articles
was published in 1967, the most recent in 2023.

These articles were collected in two tranches: the first
assembled by a single expert based on keyword searches
of online scholarly databases; the second borrowed from
a literature review created by an expert working group
on the topic of software liability. This process resulted in a
corpus of 171 articles, which was cut down during the coding
process to a final corpus of 123 articles which were acces-
sible and relevant to the topic of legal liability for insecure
software.

Each of the collected articles was coded against a rubric
developed by the authors to codify key policy design
choices in the construction of a software liability regime.
The articles were reviewed by two human coders who
scored each article based on whether it endorsed or criti-
cized the design choice or mentioned it without explicit criti-
cism or endorsement. The threshold to distinguish between
mention and endorsement or criticism was determined by
the coders based on a holistic assessment of the viewpoint
of the entire article, meaning there is necessarily an aspect
of subjectivity in the data that appears below.

Due to the subjective nature of both the data collection
and coding, the findings reported below should not be
considered representative or statistically significant claims
about the entire scholarly body of work relating to software
liability. The analysis and visualizations are intended to illu-
minate certain broad trends and frame discussions of policy
choices and models, a tool to inform the debate rather than
an absolute claim about the state of consensus in a field.

In the literature sample, most articles focused on examining
a specific component of or context for liability rather than
a proposing a holistic regime, meaning that relatively few
articles addressed every single aspect of this framework.
For this reason, in many cases, visualizations address only
those articles that address the question at hand in some
form, while also seeking to contextualize how much of the
broader sample of literature is included in that set.

SCOPE

High Risk Sectors:
should certain sectors
be the focus of liability

(or carved out)?

High Risk Software:
should security-

critical products be
treated differently?

Software Sellers of a
Certain Scale:

should liability apply
differently to large
and small vendors?

Open Source Software:
should developers of
open source software

be included?

Setting Standards:
which entities define the

standards that create
(or absolve) liability?

Assessing Compliance:
should compliance with
standards be assessed
or audited? If so, when

and by whom?

Enforcing Violations:
which entities enforce

the law? Individuals
or the government?

Consequences:
what are the

consequences when an
entity is found liable?

GOVERNANCE AND ENFORCEMENT

TRIGGERS

Responsibility:
when is the software
maker responsible for

a bad outcome?

Standards:
what behaviors create
(or absolve) liability?

Harms:
is harm needed to

create liability? If so,
what kinds of harm?

5CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

Triggers: What Makes You Liable?

3	 “The T.J. Hooper,” Casebriefs, accessed December 4, 2023,
https://www.casebriefs.com/blog/law/torts/torts-keyed-to-epstein/the-negligence-issue/the-t-j-hooper-3/.

L iability is typically understood as legal responsibility
for one’s actions (or inactions). From a policy perspec-
tive, what actions or inactions should make software

makers legally accountable for poor software security?

There are two important concepts that are relevant across
policy approaches: standards and harms.

Standards define good and bad behavior as it relates to
developing secure software. Such measures range from
design decisions such as choosing memory-safe program-
ming languages or requiring user accounts to have multi-
factor authentication, to the use of tools or checks such
as static analysis tools that scan code for vulnerabilities,
descriptions of properties of code such as free of known
vulnerabilities or known common weaknesses, or orga-
nizational practices such as having a security review step
for code requests and secure release processes to avoid
becoming a vector for a supply chain attack. The design of
explicit standards, or decisions about how standards will
implicitly be shaped over time, is a key part of a liability
policy regime as it will define the behavior toward which
software vendors are incentivized.

Harms relate to the ways in which insecurity can manifest
itself in practice. Insecurity can manifest in code, such as in
flawed code patterns that are vulnerable to prompt injec-
tions or that allow a user to bypass authentication, or in
weaknesses in security-relevant processes such as code
releases. Harms arise when such flaws are exploited to
cause harm to the user of the software, from data breaches
to ransomware, intellectual property theft, or physical injury.

Though regulatory liability could be triggered by a failure to
meet standards alone, and torts are definitionally connected
to a harm, both standards and harms play a role in each type
of regime from a policy perspective. While not required in
fact, in practice, enforcement for regulatory violations often
follows news of a data breach or another harmful incident.
For software torts, judges would need to consider ques-
tions that implicitly reply upon known or accepted stan-
dards or behavior with respect to cybersecurity, such as
whether a software maker upheld a duty they owed to the
user in creating the software (in negligence-based torts) or
if the design they chose was foreseeably risky (under prod-
ucts liability).

Standards
A liability regime can take different approaches to
defining the standards it includes and how it incorporates
them. A law or regulation could reference frameworks
or controls developed by standard-setting bodies such
as the International Standards Organization (ISO) or the
National Institute of Standards and Technology (NIST). A
law could also create new standards through regulation,
such as by directing an expert agency to create new rules.
Alternatively, it could defer the question to the courts, by
using a legal term left up to interpretation such as “reason-
able cybersecurity measures.” While explicit standards
are more typical of a regulatory regime and case-by-case
determination more typical for torts, articles and docu-
ments including the National Cybersecurity Strategy have
endorsed hybrid models that combine torts with explicit
standards in a “safe harbor” model, under which the law
delineates a set of standards that, if a company can prove
it upheld them, protect that company from tort liability. A
safe harbor sets a behavioral “ceiling” for liability, dictating
a level of behavior that wholly insulates entities from liability
and thus defining an upper limit of the behavioral changes
that a liability regime requires. Tort regimes could also use
standards to define a “floor” on liability—a set of bad behav-
iors that create a presumption of negligence on the part
of the software maker—while also leaving the door open
for judges to examine specific cases and decide that soft-
ware makers failed in their obligations to the software user
in other ways.

Standards built explicitly into a regime, whether through
regulatory approaches or a safe harbor in a tort regime,
will delineate expected behavior by software makers more
clearly and quickly than case-by-case approaches, which
will need more settled cases (each of which can take years
to resolve) to provide software makers with any measure of
legal certainty about their obligations. On the other hand,
avoiding a specific set of standards could make a regime
more flexible, enabling a judge to review each case with
respect to current industry best practices (which are always
evolving, creating challenges for static regulation) as well as
to use additional discretion to require safety behaviors that
are above and beyond industry best practice3.

This illustrates a general challenge in defining explicit stan-
dards: tradeoffs between flexibility and specificity. A simple

https://www.casebriefs.com/blog/law/torts/torts-keyed-to-epstein/the-negligence-issue/the-t-j-hooper-3/

6 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

and specific list of practices that are easy for a company or
an authority to audit for compliance may not be sufficient
to guarantee that software is designed and implemented
securely or to provide accountability for complex design
flaws in software (see for example how businesses such
as Microsoft, which espouse secure development princi-
ples,4 have experienced severe incidents as the result of
flawed design and implementation5), while standards that
can encompass a wider class of design flaws provide less
specificity and certainty for software makers. For example,
concepts such as “secure-by-design” and “secure-by-de-
fault” as recently championed by the Cybersecurity and
Infrastructure Security Agency (CISA)6 are powerful princi-
ples that span multiple levels of abstraction from principles
to specific practices. However, the highest level and most
encompassing principles from this framework may be chal-
lenging to define in a way that makes it easy for businesses
to ensure their compliance or for a potential enforcer to
easily prove noncompliance.

47 of the 123 articles surveyed mentioned the idea of using
secure development standards as a basis for standards in a

4	 “What are the Microsoft SDL Practices,” Microsoft, accessed December 4, 2023, https://www.microsoft.com/en-us/securityengineering/sdl/practices.

5	 Dan Goodin, “Microsoft Finally Explains Cause of Azure Breach: An Engineer’s Account Was Hacked,” Ars Technica, September 6, 2023,
https://arstechnica.com/security/2023/09/hack-of-a-microsoft-corporate-account-led-to-azure-breach-by-chinese-hackers/.

6	 “Secure by Design,” Cybersecurity and Infrastructure Security Agency (CISA), accessed December 4, 2023, https://www.cisa.gov/securebydesign.

liability regime, with 34 of those articles explicitly endorsing
secure development standards as a component of a liability
regime.

Such standards appear to have been relatively popular over
time within the sampled literature, having been mentioned
since the late 1980s.

Some of these articles mentioned only the general idea of
incorporating such secure development standards into a
regime or suggested entities that could develop such stan-
dards, while others named specific standards, including
government-developed standards such as NIST’s Secure
Software Development Framework (SSDF) or those devel-
oped by standards organizations such as the International
Organization for Standardization (ISO) or the Institute of
Electrical and Electronics Engineers.

NIST’s SSDF is a framework created to “reduce the number
of vulnerabilities in released software, reduce the potential
impact of the exploitation of undetected or unaddressed
vulnerabilities, and address the root causes of vulnerabil-
ities to prevent recurrences.” It includes suggestions to

https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://arstechnica.com/security/2023/09/hack-of-a-microsoft-corporate-account-led-to-azure-breach-by-chinese-hackers/
https://arstechnica.com/security/2023/09/hack-of-a-microsoft-corporate-account-led-to-azure-breach-by-chinese-hackers/
https://www.cisa.gov/securebydesign

7CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

prepare an organization (such as developing organiza-
tional policy with respect to software security procedures),
to protect software (such as using version control and code
and commit signing), to produce secure software (such
as using risk modelling, documenting design decisions,
performing human or software-based security auditing,

evaluating third-party software components), to follow
secure coding practices (such as avoiding unsafe functions
or unverified inputs, and selecting secure default config-
urations), and to respond to vulnerabilities (such as gath-
ering and investigating reports, planning and implementing
risk-based remediations, and analyzing root causes to

Mention

Endorse

Criticize

Standard: Using Secure Development Practices

8 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

feed back into security processes).7 The NIST standards
combine elements that speak to the security of the code
itself with those that address an organization’s relevant
policies, the security of their development processes as a
potential vector for supply chain attacks, and their behavior
with respect to known good practices such as addressing
vulnerabilities and performing security audits. By executive
order, the US government has moved toward requiring its
software vendors to comply with the NIST SSDF; CISA has
instantiated requirements based on the SSDF into a secure
software self-attestation form that (once finalized) will need
to be completed by all vendors who sell software to the
government.8

The coding rubric also included a few specific elements
of such frameworks to see how often they were specifi-
cally named in the articles. Many fewer articles—only 19 of
123—focused on requirements for software makers to have
policies, procedures, or specific behaviors with respect to
how they address or disclose vulnerabilities in their code,
and only a single article explicitly discussed code security
auditing or penetration testing as a part of a regime.9

Harms
A liability regime may or may not require, for liability to
accrue, that software insecurity causes actual harm to soft-
ware users. Regimes based on torts almost definitionally
require a harm to trigger liability, but regulatory regimes can
simply require certain behavior of software makers.

One disadvantage of requiring harm to trigger software
liability is that cyber outcomes (and thus harms) are depen-
dent not only on the actions of the software maker, but also
on the actions of an adversary or bad actor that exploits
a vulnerability to cause harm. This adds into the equation
complicating questions about the skills and capabilities of
different kinds of adversaries and whether it is fair or desir-
able to hold software makers equally responsible if they are
hacked by a sophisticated and well-resourced entity such
as a nation-state, versus by run-of-the-mill cyber criminals.
On the other hand, hinging liability on harms, in a sense,
scales enforcement to the manifested negative conse-
quences of insecurity, providing an inbuilt mechanism for

7	 Murugiah Souppaya, Karen Scarfone, and Donna Dodson. “Secure Software Development Framework (SSDF) Version 1.1: Recommendations for Mitigating
the Risk of Software Vulnerabilities.” National Institute of Standards and Technology US Department of Commerce, February 2022. https://doi.org/10.6028/
NIST.SP.800-218.

8	 “Request for Comment on Secure Software Development Attestation Common Form,” Cybersecurity and Infrastructure Security Agency (CISA), accessed
January 5, 2024, https://www.cisa.gov/secure-software-attestation-form.

9	 Jane Chong, “Bad Code: The Whole Series,” Lawfare, November 4, 2013, https://www.lawfaremedia.org/article/bad-code-whole-series.

10	 “Principles and Approaches for Secure By Design Software, 2023,
https://www.cisa.gov/sites/default/files/publications/CISA-OCE_Cost_of_Cyber_Incidents_Study-FINAL_508.pdf.

11	 Catherine M. Sharkey, “Can Data Breach Claims Survive the Economic Loss Rule?,” DePaul Law Review 66 (2017), last updated August 21, 2017,
https://ssrn.com/abstract=3013642.

imposing harsher punishments on those entities whose
insecurity is more societally deleterious or costly.

Harms from cyber incidents can include costs to busi-
nesses, negative consequences for individuals such as
the loss of privacy, and harms to national security such
as through the theft of intelligence-relevant information.
Financial costs to businesses are perhaps the best under-
stood and best-represented under existing theories of tort
liability (with some major caveats to be addressed later).
Businesses impacted by a cyber incident can face financial
costs stemming from operational disruptions or data loss;
ransomware payments; technical remediation and incident
response; notifying impacted consumers and providing
identity monitoring; declines in share prices; and fines or
lawsuits from government or shareholders.. Estimates of
the precise costs of cyber incidents vary widely, but CISA
reported several studies with estimates for the median cost
of an incident ranging between $50,000 and $250,000
and the mean ranging between $400,000 and $7 million.10

Albeit less common than financial harms, cyber incidents
can also cause physical harm. Physical harms from cyber
incidents are likelier to arise from high-stakes, software-en-
abled products such as medical devices, airplanes, and
cars.

Questions around which types of harms can create liability
for software makers were widely discussed in the liability
literature surveyed, perhaps in part because such ques-
tions have frustrated past attempts to use common law torts
to bring cases against the makers of insecure software.
“Economic loss doctrine,” a legal theory in place in many
states, holds that product liability should not allow one party
to seek compensation for economic damages—essentially,
any harms outside of physical harms or property damage—
beyond what was outlined in the contract they agreed to.11
Because software often causes only financial harms to
impacted businesses, and because software vendors often
sell or license software under contracts that absolve them
of most liability, this doctrine has limited the success of past
tort cases for software insecurity.

Discussed in 89 articles, the question of which harms can
potentially trigger liability was one of the most-discussed

https://doi.org/10.6028/NIST.SP.800-218
https://doi.org/10.6028/NIST.SP.800-218
https://www.cisa.gov/sites/default/files/publications/CISA-OCE_Cost_of_Cyber_Incidents_Study-FINAL_508.pdf
https://www.cisa.gov/sites/default/files/publications/CISA-OCE_Cost_of_Cyber_Incidents_Study-FINAL_508.pdf
https://ssrn.com/abstract=3013642
https://ssrn.com/abstract=3013642
https://www.jdsupra.com/legalnews/questions-about-tort-and-contract-5519297/

9CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

in the literature, behind only the questions of product and
negligence-based torts. In papers that explicitly mentioned
the question of which types of harms should qualify, the
majority view was that both economic and physical harms
should serve as a potential basis for liability.

Responsibility
A liability policy regime will also need to consider how to
allocate responsibility for failures between software manu-
facturers and software users. Software security is a problem
of “shared responsibility”: users of software, in addition to
its developers, have significant control over cybersecu-
rity outcomes through their own security practices. Torts
already have conceptions of “comparative negligence”
when the behavior of the harmed party contributed signifi-
cantly to the harmful outcome—policymakers might want
to map this concept explicitly to the software context to
balance certain policy goals.

The most canonical question around the allocation of
responsibility in software liability regimes is around

12	 “2022 Top Routinely Exploited Vulnerabilities,” Cybersecurity and Infrastructure Security Agency (CISA), August 3, 2023,
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a.

13	 Evan Sweeney, “For Hospitals Defending against Cyberattacks, Patch Management Remains a Struggle,” Fierce Healthcare, May 17, 2017,
https://www.fiercehealthcare.com/privacy-security/for-hospitals-defending-against-cyberattacks-patch-management-remains-a-struggle.

“patching,” the practice in which vendors release fixes for
discovered vulnerabilities and bugs in the form of software
updates that their customers must then apply. Put simply,
should a vendor continue to be liable for harms arising from
a vulnerability, even after they released a patch that would
fix it (and the customer failed to apply it)?

On the one hand, frequent patching is an ongoing chal-
lenge for many organizations,12 especially those with the
least resources to dedicate to information technology
management and security.13 A world in which vendors ship
insecure code and then inundate their users with countless
security-critical patches seems undesirable, and holding
developers liable for code regardless of patch availability
would certainly incentivize them to release more secure
code. At the same time, expecting developers to release
fully and perpetually secure software is likely an unrealistic
goal, and patching is thus a relatively accepted part of the
current software delivery paradigm. There exist genuine
policy goals both in reducing the number of patches that
organizations need apply, and in providing incentives for
software developers to release patches in a timely fashion

https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a
https://www.fiercehealthcare.com/privacy-security/for-hospitals-defending-against-cyberattacks-patch-management-remains-a-struggle
https://www.fiercehealthcare.com/privacy-security/for-hospitals-defending-against-cyberattacks-patch-management-remains-a-struggle

10 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

and for software users to apply these patches. Any liability
regime that rests on or can be triggered by harm will need
to draw lines in the sand about whether and when, once a
vulnerability is known and a patch available, subsequent
bad outcomes are the fault of the developer or the user.

Beyond just timely updating, there are other practices in
the security context that software operators control that
contribute significantly to security outcomes.14 Software
operators must maintain firewalls and monitoring capa-
bilities on their network. They must correctly configure
products and choose secure settings. If a software liability
regime seeks to incorporate some concept of compara-
tive negligence for cases in which the software operator’s
actions (or inactions) contributed significantly to the harm
that arose from the software’s insecurity, it may also need—
explicitly or implicitly—standards for the behavior of soft-
ware operators and developers.

40 of the articles surveyed mentioned the idea that a
liability regime for software makers should codify consid-
erations or requirements pertaining to the behavior of the

14	 “2022 Top Routinely Exploited Vulnerabilities.”

15	 Terrence August and Tunay I. Tunca, “Who Should Be Responsible for Software Security? A Comparative Analysis of Liability Policies in Network
Environments.” Management Science 57 (2011): 934–59, http://www.jstor.org/stable/25835749.

software user, such as questions about whether a soft-
ware patch was available but unapplied. Nine of those arti-
cles explicitly endorsed the idea and two critiqued it, with
these two critiques occurring more recently than any of the
endorsements.

Some articles from the literature examined other poten-
tial policy approaches to the patching problem such as
“patch liability,” the idea of instead requiring software
developers to pay the costs associated with the resources
their customers need to expend in order to apply software
patches.15 In general, these ideas appear relatively under-
explored relative to the complexity of the policy tradeoffs
at play, with only a few articles mentioning the potential
impacts of different liability approaches on developers’ and
users’ incentives and behaviors with respect to patching.

11CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

Standard: Requirements for Software Users (e.g. Timely Patching)

Mention

Endorse

Criticize

12 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

Scope: Who Can be Liable?

Scope describes the myriad questions around
which software and software vendors fall under the
purview of a liability regime.

Software for High-Risk Sectors
One way to scope a liability regime would be to limit its
requirements to a specific sector or application in which
software might operate (or to include multiple sectors but
to tailor elements such as standards to each). It makes
certain intuitive sense from a policy perspective to apply
higher standards of cybersecurity care for manufacturers
of medical device or airplane software than creators of
general-purpose word processing or customer manage-
ment software. This approach would generally mirror the
approach taken with existing cybersecurity standards for
software operators in the United States, which tend to apply
for specific high-risk sectors or data processing activities.

Within the literature, 31 articles explicitly discussed consid-
erations around sector-specific scoping or sector-specific
standards for software liability. Just under half of the articles
which mentioned the idea endorsed it, and both endorse-
ments and neutral mentions stretch over multiple decades
of the debate.

Within the literature, healthcare and medical devices were
most often mentioned as sectors that might be treated
differently, with articles also mentioning autonomous vehi-
cles, airplanes, voting machines, and nuclear plants. These
sectors typical combine both potentially unique, applica-
tion-specific software such as software embedded into
medical devices, airplanes, or voting machines with height-
ened risks of potential bad outcomes (often but not always
in terms of potential loss of life) from insecurity.

A liability regime could adopt a model premised on specific
kinds of sector-specific software (e.g., heightened liability
for makers of autonomous vehicle software) or one
premised on liability for any type of software used by high-
risk sectors (e.g. heightened liability for any type of software
sold to autonomous vehicle companies). The latter model
faces a challenge in the fact that many types of software can
be used across high- and low-risk sectors without distinction
by the vendor or due notice by the customer. Many types of
software are purpose-general (e.g., email clients) and can
be deployed across a broad range of organizations and
operating contexts, creating a leveling problem between
the design context of software and its use. Cabining liability
to certain types of software that are specific and high risk
within these sectors appealingly avoids this problem. Yet,

13CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

clear line drawing is a problem even under this approach,
with many examples of technologies that provide essen-
tial support to the function of such devices but that are not
specific to them, such as operating systems or cloud data
processing. Depending on how these lines are drawn,
software for use in these sectors is likely to become more
expensive and more bifurcated than standard, consum-
er-grade applications.

Software for High-Risk Functions
Some types of software are sensitive not because of the
context in which they are deployed and used, but instead
because they perform security-critical or risky functions. For
example, identity and access management systems control
access to other computing resources and are frequently
targeted by hackers seeking to escalate their permissions
to access sensitive data or perform privileged actions.
Other software systems with potentially important and
systemic security impacts include tools like hypervisors and
virtualization software in cloud computing environments or
network management tools and firewalls. Different appli-
cability or standards for software of different security risk
levels are present in existing policy regimes such as the
European Union’s Cyber Resilience Act, which makes use of
such a distinction and applies higher standards of security
to software performing certain high-risk and security-critical
functions.16

16	 Markus Limacher, “Cyber Resilience Act – Get Yourself and Your Products up to Speed for the CRA,” InfoGuard, December 4, 2023. https://www.infoguard.ch/
en/blog/cyber-resilience-act-get-yourself-and-your-products-up-to-speed-for-the-cra.

Software Sellers of a Certain Scale
Another standard that a law could use to scope who can be
liable—or to tier other elements of the regime, such as stan-
dards—would be based on the size of the entity that sold the
software. For example, liability could kick in once compa-
nies are of a certain size as defined by financial metrics such
as revenue, or sales of the software in question (noting that
this question might be difficult to answer—for example, how
to treat the sale of one license to one company, but that may
result in hundreds of installs of the software). Conversely,
small entities—those with low revenues or that have sold
few instances of the software in question—could be carved
out of a liability regime or subject to less complex or burden-
some security standards. Such differentiation would reduce
the compliance burden for small businesses that sell soft-
ware. Such a system could also intersect with other scoping
or tiering systems; for example, it might be the case that a
software vendor that sells software to a water treatment
plant or power station should always be liable, regardless of
size, while the same might not be true for those that sell to
non-critical infrastructure companies.

Open Source Software
Open source software (OSS) is not software sold by a
vendor; rather, it is software whose source code is publicly
available, distributed under a license that grants others total

Scope: Sector Specific Scoping

Mention

Endorse

Criticize

https://www.infoguard.ch/en/blog/cyber-resilience-act-get-yourself-and-your-products-up-to-speed-for-the-cra
https://www.infoguard.ch/en/blog/cyber-resilience-act-get-yourself-and-your-products-up-to-speed-for-the-cra

14 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

Scope: Including Open Source Software

Mention

Endorse

Criticize

15CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

permission to use and modify the software, while ensuring
that the software’s original creator offers no guarantees
about its use nor accepts responsibility for any harms
caused.

While discussion of OSS has increased since the year 2010
as compared to prior decades, it has only been mentioned
in 9 articles, much less than many of the other design ques-
tions in the framework. Of all articles that mentioned the
question, none endorsed the idea of including developers
of OSS in a software liability regime.

This finding broadly aligns with the authors’ prior supposi-
tion that liability is not the right policy tool to use to improve
security in the open source ecosystem. Much of open
source code is often published by academics, researchers,
and hobbyists; threatening these unpaid volunteers with
legal liability for sharing their code would likely have a
chilling effect on their participation and thus harm an
ecosystem that has provided myriad benefits for academic
knowledge-sharing and the distribution of useful compo-
nents. Even for widely used and widely supported open
source packages, creating potential liability for contributors
could disincentivize hobbyists and corporate employees
alike from contributing security features and fixes back
to the package—exactly the opposite of what most open
source packages need from a security perspective.
Besides these issues, there are more practical ones, such
as to which contributors to apply liability when open source
packages often incorporate contributions from dozens or
hundreds of developers. There are myriad other ways to
support the security of OSS (funding, auditing, encouraging
companies to contribute back to OSS security17) that are a
better fit for the unique context of open source that lacks
clear contracts, transactions, or payments between a soft-
ware’s developer and its users.

The inclusion of open source developers is not the only
means by which a liability policy regime could interact with
open source software security. A liability regime could
place requirements around responsible use of open source
code on software vendors as an element of standards. This
would incentivize software vendors to more carefully vet
and to contribute back to the security of open source code
that they want to use, improving the health of the broader
ecosystem and the security of proprietary code that incor-
porates open source while avoiding the chilling effects of
placing liability directly onto the developers of open source
code.

17	 Stewart Scott, Sara Ann Brackett, Trey Herr, Maia Hamin, “Avoiding the Success Trap: Toward Policy for Open-Source Software as Infrastructure.” Atlantic
Council (blog), February 8, 2023, https://www.atlanticcouncil.org/in-depth-research-reports/report/open-source-software-as-infrastructure/.

https://www.atlanticcouncil.org/in-depth-research-reports/report/open-source-software-as-infrastructure/

16 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

Governance and Enforcement:
Who Holds You Liable (and How)?

18	 “Advisory Circular on Guidelines for Design Approval of Aircraft Data Link Communication Systems Supporting Air Traffic Services (ATS),” US Department of
Transportation, Federal Aviation Administration, September 28 2016, https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_20-140C.pdf.

19	 “Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions,” US Food and Drug Administration, Center for
Devices and Radiological Health, September 26, 2023, https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecurity-medical-
devices-quality-system-considerations-and-content-premarket-submissions.

20	 “Gramm-Leach-Bliley Act,” Federal Trade Commission, June 16, 2023, https://www.ftc.gov/business-guidance/privacy-security/gramm-leach-bliley-act.

21	 “Government Contractors Beware: New Cybersecurity Rules and False Claims Act Enforcement Actions on the Rise,” Akin Gump Strauss Hauer & Feld LLP,
accessed December 4, 2023,
https://www.akingump.com/en/insights/alerts/government-contractors-beware-new-cybersecurity-rules-and-false-claims-act-enforcement-actions-on-the-rise.

Equally important to the “what” of a liability regime
is the “who.” That is, which entities are responsible
for implementing the components that make up

the regime? Enforcement and governance are essential
elements that differentiate liability from mechanisms of
self-governance or voluntary standards.

Setting Standards
There are a few existing models of standard-setting that
might be ported over to the software cyber liability context.

One model would be akin to that taken by certain
cyber-physical systems such as airplanes and medical
devices: in this model, a regulator sets standards for disclo-
sures or information that a software product must submit
to the regulator before the product comes to market. For
example, the Federal Aviation Administration has increas-
ingly embedded cybersecurity into its approval processes
for airplanes,18 and the Food and Drug Administration (FDA)
requires medical device makers to adopt and disclose stan-
dards around secure development before their devices can
be approved to go to market.19 These preemptive approval
models allow regulators to more easily include standards
around secure development into their processes: rather
than needing to give companies a checklist up-front of prac-
tices by which they must abide, they can force companies to
affirmatively attest to or describe the secure-by-design and
secure-by-default practices they followed in the creation of
their software. In these models, the same entity also certi-
fies compliance (e.g., allows the product to come to market)
and, often enforces against violators (although in medical
devices, for example, consumers can also bring suit under
products liability). These models are relatively powerful, but
they hinge on the fact that the regulator controls entry to the
market, in that their approval is required as a precondition
of the product being sold. This model is less realistic for all
software products—software ranges from industrial control
systems to video games created by small independent

developers, and requiring even the smallest of software
programs to be approved before coming to market would
likely result in a severely throttled software ecosystem.

Another model would be having an expert agency set stan-
dards such as secure development standards, which would
apply to certain types of software without requiring disclo-
sures or filings before a product comes to market. In most
models from existing law, the entity that sets the standards
is also the one that enforces them [e.g., the Federal Trade
Commission (FTC) both sets standards for and enforces the
Gramm Leach Bliley Act,20], but sometimes the two func-
tions are divided. Yet another model would be requiring
software makers to include statements of compliance
with particular (federally selected or developed) standards
in their contracts, thus giving software buyers the oppor-
tunity to sue software vendors for contractual violations if
they fell short. For example, a recent proposed update to
the Federal Acquisition Regulation would require contrac-
tors developing software on behalf of the government to
certify compliance with Federal Information Processing
Standards developed by the National Institute of Standards
and Technology (NIST); if a company misrepresents their
compliance, an action can brought by the Department of
Justice under the False Claims Act.21

Another approach would be to avoid prespecification of
standards altogether. For example, a law could state that
a company has a duty to its customers to uphold “reason-
able” security standards, thereby allowing a judge in a case
to determine what measures are reasonable. In such cases
a judge may well look to existing standards and industry
best practices to judge whether a practice was or was not
reasonable—but these standards and practices are not
identified a priori in the regime itself. As discussed in the
section on standards, this approach create flexibility by
trading off speed and certainty.

https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_20-140C.pdf
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecurity-medical-devices-quality-system-considerations-and-content-premarket-submissions
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecurity-medical-devices-quality-system-considerations-and-content-premarket-submissions
https://www.ftc.gov/business-guidance/privacy-security/gramm-leach-bliley-act
https://www.akingump.com/en/insights/alerts/government-contractors-beware-new-cybersecurity-rules-and-false-claims-act-enforcement-actions-on-the-rise
https://www.akingump.com/en/insights/alerts/government-contractors-beware-new-cybersecurity-rules-and-false-claims-act-enforcement-actions-on-the-rise

17CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

Assessing Compliance
Depending on the structure of a liability regime, some
entity or entities may be empowered to audit, assess, or
certify compliance as part of the scheme. One approach
would be self-certification—requiring entities to certify
their own behaviors or compliance with standards, facing
penalties if their attestations were later found to be false.
Self-certification would likely need to be paired with some
requirements for what entities must certify, to avoid race-to-
the-bottom situations in which companies seek to promise
nothing so they can be accountable for nothing. Self-
certification was mentioned in only four of the articles and
endorsed by none. However, it is a component of existing
regimes such as Europe’s Cyber Resilience Act.

Other approaches would involve external auditing of some
form. External auditing to determine compliance was
mentioned by relatively few articles, which were split on its
desirability.

22	 “Laws & Regulations,” NHTSA, accessed December 4, 2023. https://www.nhtsa.gov/laws-regulations.

23	 “Enforcement Process,” US Department of Health and Human Services, May 7, 2008,
https://www.hhs.gov/hipaa/for-professionals/compliance-enforcement/enforcement-process/index.html.

24	 “COPPA Safe Harbor Program,” Federal Trade Commission, January 7, 2015, https://www.ftc.gov/enforcement/coppa-safe-harbor-program.

External auditing could take several forms. A regulator
could certify compliance as a prerequirement for the
sale of software—mirroring regimes such as the approval
processes for medical devices and airplanes outlined
above, or the Federal Motor Vehicle Safety Standards.22
Alternatively, audits could be reactive rather than proac-
tive, such as those performed by the Health and Human
Services (HHS) Office of Civil Rights to investigate inbound
tips and assess compliance.23

External auditors could also come from outside govern-
ment; government can certify outside entities to assess
compliance with the standards of the regime. For example,
the Children’s Online Privacy Protection Act allowed
industry groups to certify self-regulatory frameworks, which,
after approval by the government, satisfy the law’s safe
harbor requirements.24 Liability regimes can also combine
other variables such as scope with auditing requirements:
the European Union’s (EU) Cyber Resilience Act allows
noncritical entities to perform a self-evaluation of their

https://www.nhtsa.gov/laws-regulations
https://www.hhs.gov/hipaa/for-professionals/compliance-enforcement/enforcement-process/index.html
https://www.hhs.gov/hipaa/for-professionals/compliance-enforcement/enforcement-process/index.html

18 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

conformity with the requirements of the Act, while critical
entities must be certified by an external (EU-approved)
auditor.

Enforcing Violations
One general dividing question is, do companies and users
have the right to directly sue those responsible for inse-
cure software, or does a government entity (e.g. a federal
agency such as the FTC or State Attorneys General) enforce
the law? Although the two delineate general models for
enforcement, they are not mutually exclusive.

CONSUMER ENFORCEMENT

One option for enforcement is to allow the entities harmed
by insecure software—perhaps most often businesses, but
also including individual consumers—to directly sue the
company that sold them the software. Such a regime could
be brought about by passing a law to change how product
or negligence torts have been interpreted by the courts
when it comes to software insecurity. Alternately, a law
could simply establish new responsibilities or obligations
that software makers owe to their customers and include a

private right of action that allows those customers to directly
sue software makers that have violated their rights under
that law.

Product or negligence torts for software were the two
most widely discussed topics coded in the literature, with
97 and 95 mentions of each concept respectively. Data on
article stances shows that product liability has both more
supporters and more detractors than does a negligence
standard. Generally speaking, authors adopted an either/or
approach: of the 86 articles that mentioned both concepts,
only seven articles endorsed both approaches.

Visualizing the distribution of these articles by their year of
publication suggests that this debate has been ongoing
since the beginning of the literature sample and that neither
approach has come to dominate over time.

Another approach that Congress could take to structure a
law with consumer enforcement would be a private right of
action, a federal law that places obligations on companies
and then grants consumers the right to bring suit to enforce
their rights under the law. Eight articles endorsed the idea
of allowing both government and consumer enforcement
by creating a federally enforced regime with a private right
of action.

19CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

Governance and Enforcement: A Negligence Liability (Duty of Care) Regime

Mention

Endorse

Criticize

Governance and Enforcement: A Products (Strict) Liability Regime

Mention

Endorse

Criticize

20 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

GOVERNMENT ENFORCEMENT

Another approach, and one taken with many existing cyber
standards, is to have a federal or state agency (or agencies)
enforce the law’s requirements instead.

Many existing federal-level cybersecurity standards in the
United States are sector-specific and thus enforced by
the sector regulator, or by the Federal Trade Commission
(FTC) if no such is available: for example, Health Insurance
Portability and Accountability Act (HIPAA), the law
imposing cybersecurity standards on healthcare entities
in the processing of health data, is enforced by Health
and Human Services (HHS); the Gramm Leach Bliley Act,
which pertains to financial institutions, is enforced by the
Consumer Financial Protection Bureau, the FTC, and other
financial regulators; Children’s Online Privacy Protection,
which protects children’s data, is enforced by the FTC as
well; and cyber standards for pipeline operators by the
Transportation Security Administration.

The idea of federal government enforcement was less
often discussed in the sampled literature than torts-based
approaches, appearing in only 43 of the articles surveyed.

Visualizing articles’ stances relative to their year of publica-
tion suggests that this idea emerged slightly later than did
the idea of torts approaches and that it has gained relatievly
more endorsements relative to mentions especially within
the past decade. However, its only two criticisms have also
occurred recently.

With respect to which agency or agencies should serve as
an enforcer, in the data, only the FTC and the FDA (the latter
typically within the context of medical devices) were named
as potential federal enforcing entities in more than two arti-
cles. Additionally, 12 of the articles endorsed the idea of
granting enforcement power to state law enforcement such
as State Attorneys General.

21CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

Governance and Enforcement: A Federally Enforced Regime

Mention

Endorse

Criticize

22 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

Consequences
Another key question is what happens to software makers
that are found liable (and by whom). Most often, conse-
quences come in the form of a requirement to pay money:
either a penalty (for a violation of regulatory requirements)
or damages (in torts, to compensate a harmed party). Tort-
based regimes are necessarily civil, rather than criminal,
proceedings; however, a statutory regime could create
potential criminal liability with potential consequences
including imprisonment. For example, violations of HIPAA,
which regulates security controls for health care, can lead
to both civil and criminal penalties, with criminal cases
enforced by the Department of Justice rather than HHS.25

Regulatory regimes could draw from a few existing
models to establish the monetary penalties to be applied
for violations. They could structure the law as a penal-
ty-per-violation—for example, the FTC can extract mone-
tary penalties from entities that violate Children’s Online
Privacy Protection of up to $50,120 per violation.26 In past,
the FTC has extracted penalties in the hundreds of millions
of dollars from the largest wrongdoers.27 However, such
regime would need to either set this per-violation cost to be
very high or ensure that the number of violations is propor-
tionate to the impact of the incident (for example, counting

25	 “HIPAA Violations & Enforcement,” American Medical Association, November 28, 2023,
https://www.ama-assn.org/practice-management/hipaa/hipaa-violations-enforcement.

26	 “Complying with COPPA: Frequently Asked Questions,” Federal Trade Commission, July 20, 2020,
https://www.ftc.gov/business-guidance/resources/complying-coppa-frequently-asked-questions.

27	 “Google and YouTube Will Pay Record $170 Million for Alleged Violations of Children’s Privacy Law,” Federal Trade Commission, September 4, 2019,
https://www.ftc.gov/news-events/news/press-releases/2019/09/google-youtube-will-pay-record-170-million-alleged-violations-childrens-privacy-law.

28	 “EU Cyber Resilience Regulation Could Translate into Millions in Fines.” Help Net Security (blog), January 19, 2023,
https://www.helpnetsecurity.com/2023/01/19/eu-cyber-resilience-regulation-fines/.

29	 “What Are the GDPR Fines?,” GDPR.eu, July 11, 2018, https://gdpr.eu/fines/.

each separate instance of insecure software sold) in order
to ensure that companies cannot walk away from a secu-
rity failure that caused widespread harm with only a small
fee to pay. Alternately, other regimes permit regulators to
extract penalties based on the revenues of the penalized
entity—for example, Europe’s Cyber Resilience Act permits
enforcers to extract penalties of up to 15 million euros or
2.5 percent of a company’s total sales for the previous
year, whichever is greater.28 The European General Data
Protection Regulation follows a similar model based on a
percentage of the firm’s worldwide annual revenue, with
different tiers of possible fines depending on the specific
provision violated.29

Under a regime structured using torts, companies would
need to pay damages assessed by a judge. These damages
can be “compensatory,” or designed to compensate
the impacted party for the harms they suffered, or “puni-
tive,” which damages are intended explicitly as a punish-
ment above and beyond the harm caused. If implemented
through torts, judges could draw upon a robust body of
existing jurisprudence to determine appropriate compen-
sation for harms arising from software insecurity; if instead
achieved through a federal regime with a private right of
action, lawmakers could tweak this penalty as well.

https://www.ama-assn.org/practice-management/hipaa/hipaa-violations-enforcement
https://www.ama-assn.org/practice-management/hipaa/hipaa-violations-enforcement
https://www.ftc.gov/business-guidance/resources/complying-coppa-frequently-asked-questions
https://www.ftc.gov/business-guidance/resources/complying-coppa-frequently-asked-questions
https://www.ftc.gov/news-events/news/press-releases/2019/09/google-youtube-will-pay-record-170-million-alleged-violations-childrens-privacy-law
https://www.ftc.gov/news-events/news/press-releases/2019/09/google-youtube-will-pay-record-170-million-alleged-violations-childrens-privacy-law
https://gdpr.eu/fines/

23CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

Goals: What Does the
Regime Try to Achieve?
Goals in the Literature

Each of the elements outlined above can be mixed
and matched according to the goal of the liability
regime. A liability regime must have a goal, explicit

or implicit—or else, why effect a change? The rubric coded
articles with respect to two broad-bucket potential goals.
The first is to incentivize better security behavior by soft-
ware vendors, typically in service of improving cybersecu-
rity outcomes more broadly. The second is the question of
providing redress, or ensuring that entities that are finan-
cially or otherwise harmed by a software vendors’ failures
are justly compensated. While the rubric coded only for
these two goals, there are other possible ones, such as the
desire to harmonize, unify, or preempt potentially diverse
sets of cybersecurity requirements and liabilities that may
emerge in the future under the evolution of common law
doctrines or state law.

While these goals are not at all incompatible, they are also
distinct—the fulfillment of one does not imply the fulfillment
of the others. A regime could drive better software security

without necessarily providing recompense to victims of
insecurity, and vice versa. This section discusses each of
the goals as represented in the literature and then explains
how each goal might parameterize key design questions
outlined above.

REBALANCE RESPONSIBILITY –
INCENTIVIZE BETTER SECURITY

41 of the 123 surveyed articles described a potential goal
for a liability regime in terms of changing incentives for
software makers to to push them to adopt better security
behaviors and practices.

This goal has appeared in the sampled literature across
multiple decades.

We expected this goal to be closely related to discussions
of market failures or information asymmetries that limit the
ability of the market to effectively incentivize better software
security (e.g., the idea that software consumers are ill-po-
sitioned to evaluate the security of the software they buy

24 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

Goal: To Incentivize Better Security Behavior

Mention

Endorse

Criticize

and thus the market inadequately incentivizes investment
in security). Indeed, of the 41 articles with a stated goal of
driving better security, ten explicitly cited market failures or
information asymmetries as a current challenge with the
ecosystem—a much higher rate than the six articles that
endorsed this idea from the 130 remaining articles without
such a goal. However, the idea of market failures and infor-
mation asymmetries in security entered into the discussion
in the surveyed literature relatively later, only after 2000.

PROVIDING REDRESS FOR HARMS

56 of the 123 articles explicitly endorsed the goal of
providing redress for harmed software users as an explicit
goal of a liability regime, with another 38 mentioning the
idea without explicitly stating that it was a core goal or moti-
vator for imposing a liability regime. That means this goal
was present in more of the surveyed literature than that of
improving security behavior and outcomes (though also
more often mentioned without explicit endorsement).

This goal also appears earlier than the goal of incentivizing
better behavior in the sampled literature, first appearing as
early as 1977.

Mention

Endorse

Criticize

Challenge: Market Failures or Information Asymmetries

25CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

Mention

Endorse

Criticize

Goal: To Provide Redress for Harmed Software Users

The goal of providing redress might reasonably be closely
linked to the fact that currently, consumers and businesses
struggle to recover losses from makers of insecure soft-
ware. Of the 56 articles that endorsed providing redress to
harmed parties as a core goal, 35 also mentioned current
challenges and barriers to winning software cases, as
compared to eight of the 115 articles that did not endorse
providing redress as an explicit goal. Mention of difficulties

winning current lawsuits have also been present in the
corpus for nearly four decades:

This idea was emphasized during the 1990s, which may
have been precipitated by ProCD, Inc. v. Zeidenberg, a
court case that found so-called “shrink-wrap licenses”—
licenses that the user “accepted” by opening the shrink-
wrap that protected physical media like CDs that contained

26 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

software for install—to be legally valid.30 However, this idea
has continued to be mentioned throughout the articles in
the years since.

Finally, the two goals are hardly incompatible: 25 arti-
cles explicitly endorsed both incentivizing security and
redressing harm as a goal or motivation for imposing a
liability regime.

Matching Goals to Other
Elements of a Liability Regime
Different design choices in the construction of a liability
regime will make the regime apply to different entities,
incentivize different behavior, and provide different reme-
dies. All these choices will shape its results and the changes
it effects. Therefore, the explicit goal or goals of a liability
regime provide direction on many of the key design choices
outlined above.

REBALANCE RESPONSIBILITY –
INCENTIVIZE BETTER SECURITY

A regime designed to provide incentives for vendors to
adopt more secure behavior is likely to focus strongly on
the standards component of a regime, whether these stan-
dards are required in regulation or provide a safe harbor
from tort liability. The standards baked into a regime will
define the set of behaviors toward which software vendors

30	 “ProCD, Inc. v. Zeidenberg,” Casebriefs, accessed December 4, 2023,
https://www.casebriefs.com/blog/law/contracts/contracts-keyed-to-farnsworth/the-bargaining-process/procd-inc-v-zeidenberg/.

will be incentivized, making it essential for policymakers
with this goal to devise either strong standards, or a means
for developing adaptive strong standards, which they
believe will drive better security outcomes if adhered to.

Indeed, among articles from the literature in which the
author identified incentivizing better security behavior as
a core goal of a liability regime, a majority endorse the idea
of including secure development standards as a compo-
nent—not true for articles without such a goal. This substan-
tiates the idea that there is a connection between the goal
of improving security and a focus on the specific standards
and practices that would need to be required in law to do so.

A goal of driving better security behavior might also make
policymakers more interested in enforcement structures
such as federal enforcement or torts liability with a safe or
unsafe harbor, since these structures make it easier and
faster to delineate clear standards through policy rather
than waiting for courts to decide them over time. A regu-
latory regime might be particularly attractive for this goal
because, unlike torts, it would not require harm to occur
before action could be taken, potentially allowing enforcers
to intervene before security malfeasance turns into indi-
vidual or societal harm.

Indeed, a much larger percentage of articles with a goal to
incentivize better security endorse federal enforcement,
in contrast to articles that did not state an explicit goal of
incentivizing better cybersecurity behavior.

Mention

Endorse

Criticize

Challenge: Current Barriers to Winning Lawsuits

https://www.casebriefs.com/blog/law/contracts/contracts-keyed-to-farnsworth/the-bargaining-process/procd-inc-v-zeidenberg/
https://www.casebriefs.com/blog/law/contracts/contracts-keyed-to-farnsworth/the-bargaining-process/procd-inc-v-zeidenberg/

27CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

28 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

Likewise, state government enforcement was more popular
among articles that explicitly stated a goal of driving better
security behavior. Delegating authority in such a way
might increase the resources and enforcement power of
the federal government, an appealing proposal for driving
wider compliance. Surprisingly, governance mechanisms
such as external auditing were less popular in articles with
this goal than in the overall set, contravening the expecta-
tion that such measures would be popular because they
would increase compliance and avoid the need to wait for a
security incident to identify violators.

Articles with the goal of incentivizing better security
behavior were more likely than those without to explicitly
endorse either product or negligence liability regimes—
for example, 16 out of 41 articles with this goal endorsed
product liability as opposed to 13 out of 130 without the goal.
Articles with this goal endorsed both product and negli-
gence liability with approximately equal rates to the base
set of literature.

PROVIDING REDRESS FOR HARMS

If the goal of a liability regime is to provide redress to users
of software who were harmed by its insecurity, such a
regime will be focused on the harms that can trigger liability,
perhaps more so than on the specific standards that soft-
ware makers must uphold. In fact, policymakers with this
goal in mind might select a regime with very strict standards
or even no standards at all to avoid cases in which harmed
software users are denied redress because the software
vendor met the legal baseline of responsible behavior.

Indeed, sampled articles with a stated goal of providing
redress for harmed users were much more likely to
endorse strict product liability—more focused on whether
the product itself was defective than on the manufactur-
er’s intent—than articles without such a goal. These articles
were also more likely to endorse strict product liability than
negligence liability, which would incorporate a standard of
care that defines software makers’ obligations.

29CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

30 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

Limitations and Directions
for Future Work

The sample of the literature conducted herein has
several limitations that could be improved on in
future work. First, the selection of articles was based

on keyword searches and expert judgement rather than
a measure such as citation count for all articles, which
limits our ability to understand whether the sample is
representative of the broader debate. Second, several
factors of particular interest in this debate resolved only
after the coding was completed, meaning the rubric did
not incorporate some relevant questions such as limiting

the applicability of a regime by type of software product
or how to handle different types of supply chain compro-
mise. Future work might consider a more robust method-
ology for article selection and a more extensive rubric. It
might also lessen the degree of subjectivity in the actual
coding by codifying standards and examples of endorse-
ment, mention, and criticism ahead of time, or by having
multiple reviewers code the same article and then using
the average of their judgements to inform a final score.

31CYBER STATECRAFT INITIATIVE

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE #ACcyber

Conclusion

31	 Annie Lowrey, “Sony’s Very, Very Expensive Hack.” New York Magazine, December 16, 2014,
https://nymag.com/intelligencer/2014/12/sonys-very-very-expensive-hack.html.

32	 Federal Trade Commission, “Equifax to Pay $575 Million as Part of Settlement with FTC, CFPB, and States Related to 2017 Data Breach,” July 22, 2019,
https://www.ftc.gov/news-events/news/press-releases/2019/07/equifax-pay-575-million-part-settlement-ftc-cfpb-states-related-2017-data-breach.

33	 Trey Herr et al., “Broken Trust: Lessons from Sunburst,” Atlantic Council (blog), March 29, 2021,
https://www.atlanticcouncil.org/in-depth-research-reports/report/broken-trust-lessons-from-sunburst/.

Conducting a meta-analysis of a complicated debate
such as software liability necessarily produces data
that is more illustrative than it is dispositive. The

trends outlined above are not meant to present definitive
answers as to the right approach on liability, but instead
to provide a structuring framework that can help illumi-
nate how different policy design questions—and the rela-
tionships between such questions—have been discussed
(and sometimes under-discussed) thus far in the scholarly
debate. In particular, some of the topics that were relatively
more neglected in the literature sample, such as specific
frameworks that could form the basis for standards in a
liability regime, how to handle the problem of user behavior
and patching, and how to scope the regime or its standards
to different sectors or types of software, seem to be areas
where further study and debate are much needed.

Though it is tempting to analogize software liability neatly
to other products or goods for which policymakers have
constructed successful liability regimes—a popular meta-
phor is cars—these metaphors obscure important details of
the ways that software is meaningfully different and poses
greater challenges to regulate as a class of technology than
many that have come before. Software is everywhere—
it is found in every industry, in every application from the
most trivial to the most consequential. It ranges almost
unimaginably in scale and complexity, from tiny calcu-
lator applications to vast and sprawling networks of cloud
computing infrastructure on which an incalculable number

of other computing applications depend. These factors
create paradoxes for regulators: societally and economi-
cally, we benefit hugely from a fast-moving, innovative, and
thriving ecosystem of software development. At the same
time, the persistent ethos of “ship now, fix later” has led to
vulnerabilities that have cost collective billions of dollars31
and damaged individual privacy32 and national security33
through myriad cyber incidents great and small.

In practice, software liability may not be realized through
a single, comprehensive regime that addresses every
concern and every type of software at once. Instead, it
might be an incremental form of progress: the creation of
a duty of care for the largest vendors, or a requirement for
the majority to adopt a small set of known best practices.
One key throughline is likely to be adaptability: the ability
of a regime to adapt to evolving best practices in the soft-
ware security landscape, to adapt standards to different
paradigms and functions for software, and to adapt to the
different scales and stakes of various software applications.

The policy task ahead on software liability is complex and
contested—it will demand common language in addition
to common purpose. This work brings forward a set of core
design questions from the history of the debate to help
advance the current policy conversation around software
liability, all in service of one goal: to improve outcomes in
a world ever more reliant on the security of the software it
consumes.

https://www.ftc.gov/news-events/news/press-releases/2019/07/equifax-pay-575-million-part-settlement-ftc-cfpb-states-related-2017-data-breach
https://www.ftc.gov/news-events/news/press-releases/2019/07/equifax-pay-575-million-part-settlement-ftc-cfpb-states-related-2017-data-breach

32 ATLANTIC COUNCIL

DESIGN QUESTIONS IN THE SOFTWARE LIABILITY DEBATE#ACcyber

About the Authors

Maia Hamin is an Associate Director with
the Atlantic Council’s Cyber Statecraft
Initiative under the Digital Forensic
Research Lab (DFRLab). She works on
the intersection of cybersecurity and
technology policy, including projects on
the cybersecurity implications of artificial
intelligence, open-source software, and

cloud computing. Prior to joining the Council, Maia was a
TechCongress Congressional Innovation Fellow serving in
the office of Senator Ron Wyden, and before that a software
engineer on Palantir’s Privacy and Civil Liberties team. She
holds a B.A. in Computer Science from Princeton University.

Dr. Trey Herr is the director of the Atlantic
Council’s Cyber Statecraft Initiative and
an assistant professor of Cybersecurity
and Policy at American University’s
School of International Service. At the
Council, the CSI team works at the inter-
section of cybersecurity and geopolitics
across conflict, cloud computing, supply

chain policy, and more. Previously, he was a senior security
strategist with Microsoft handling cloud computing and sup-
ply chain security policy as well as a fellow with the Belfer
Cybersecurity Project at Harvard Kennedy School and a
non-resident fellow with the Hoover Institution at Stanford
University. He holds a PhD in Political Science and BS in
Musical Theatre and Political Science.

Sara Ann Brackett is a research associ-
ate at the Atlantic Council’s Cyber
Statecraft Initiative under the Digital
Forensic Research Lab (DFRLab). She
focuses on open-source software secu-
rity (OSS), software bills of materials
(SBOMs), software liability, and software
supply-chain risk management within the

Initiative’s Systems Security portfolio. She is an undergrad-
uate at Duke University, where she majors in Computer
Science and Public Policy, participates in the Duke Tech
Policy Lab’s Platform Accountability Project, and works with
the Duke Cybersecurity Leadership Program as part of
Professor David Hoffman’s research team.

Andy Kotz is a recent graduate of Duke
University, where he majored in Computer
Science and Political Science and served
as a Cyber Policy Research Assistant on
Professor David Hoffman’s research team.

*Executive Committee Members

List as of October 11, 2023

CHAIRMAN

EXECUTIVE
CHAIRMAN EMERITUS

PRESIDENT AND CEO

EXECUTIVE VICE
CHAIRS

VICE CHAIRS

TREASURER

DIRECTORS

ł

HONORARY
DIRECTORS

*Executive Committee Members

List as of October 11, 2023

CHAIRMAN

EXECUTIVE
CHAIRMAN EMERITUS

PRESIDENT AND CEO

EXECUTIVE VICE
CHAIRS

VICE CHAIRS

TREASURER

DIRECTORS

ł

HONORARY
DIRECTORS

The Atlantic Council is a nonpartisan
organization that promotes
constructive US leadership and
engagement in international affairs
based on the central role of the
Atlantic community in meeting
today’s global challenges.
1030 15th Street, NW, 12th Floor,
Washington, DC 20005
(202) 778-4952
www.AtlanticCouncil.org

